Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13172   Accepted: 9368

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

思路:没得说,矩阵快速幂

代码如下:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod = ;
const int N = ;//矩阵的维数,角标从0开始
struct Matrix
{
__int64 v[N][N];
Matrix()
{
memset(v,,sizeof(v));
}
};
//矩阵的乘法p1*p2
Matrix multi(Matrix p1,Matrix p2)
{
Matrix res;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
if(p1.v[i][j])//代码优化,是0的话就不用计算
for(int k=;k<N;k++)
res.v[i][k]=(res.v[i][k]+(p1.v[i][j]*p2.v[j][k]))%mod;
return res;
}
//矩阵的快速幂p^k
Matrix pow(Matrix p,__int64 k)
{
Matrix t;
for(int i=;i<N;i++)//初始化为单位矩阵
t.v[i][i]=;
while(k)
{
if(k&)
t=multi(t,p);
p=multi(p,p);
k=k>>;
}
return t;
} int main()
{
__int64 n;
Matrix e,ans;
e.v[][]=e.v[][]=e.v[][]=;
e.v[][]=;
while(scanf("%I64dd",&n)!=EOF&&n!=-)
{
ans = pow(e,n);
printf("%I64d\n",ans.v[][]);
}
return ;
}

poj3070矩阵快速幂求斐波那契数列的更多相关文章

  1. 51 Nod 1242 矩阵快速幂求斐波那契数列

    #include<bits/stdc++.h> #define mod 1000000009 using namespace std; typedef long long ll; type ...

  2. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  3. 矩阵快速幂--51nod-1242斐波那契数列的第N项

    斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...

  4. UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)

    题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...

  5. 矩阵快速幂 求斐波那契第N项

    #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> us ...

  6. python 快速幂求斐波那契数列

    先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...

  7. codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...

  8. POJ 3070 - 快速矩阵幂求斐波纳契数列

    这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...

  9. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

随机推荐

  1. @RequestMapping 介绍

    RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径. RequestMapping注解有六个属性,下面我们把她 ...

  2. Laravel Tinker 使用笔记

    我们知道,Laravel Tinker 提供了命令行式的交互调试途径.使用极其方便直观. 使用: #php artisan tinker 要点: 命令要在一行上输入完成,回车执行.>>&g ...

  3. predict_proba 的使用

  4. HTML5 APP应用实现图片上传及拍照上传功能

    https://blog.csdn.net/zmzwll1314/article/details/46965663 http://www.cnblogs.com/leo0705/ https://zh ...

  5. 常见sql for oracle

    select to_char(current_timestamp,'yyyy-mm-dd hh24:mi:ss.ff3'),to_char(sysdate,'yyyy-mm-dd hh24:mi:ss ...

  6. 负值之美:负margin在页面布局中的应用

    本文转载自:http://www.topcss.org/?p=94,有修改. 负数给人总是一种消极.否定.拒绝之感,不过有时利用负margin可以达到奇妙的效果,今天就表一表负值在页面布局中的应用.这 ...

  7. 2018.09.16 codeforces1041C. Coffee Break(双端队列)

    传送门 真心sb题啊. 考场上最开始看成了一道写过的原题... 仔细想了一会发现看错了. 其实就是一个sb队列. 每次插入到队首去就行了. 代码: #include<bits/stdc++.h& ...

  8. Shell 基本语法

    一. Linux基本命令 1.1.  cp命令 该命令的功能是将给出的文件或目录拷贝到另一文件或目录中,功能十分强大. 语法: cp [选项] 源文件或目录 目标文件或目录 1.2. mv命令 用户可 ...

  9. @WebService @WebMethod 详解

    形象图解 首先AB均需要@WebService如果 @WebService(endpointInterface="package.B") public class A implem ...

  10. (转) MVC 中 @help 用法

    ASP.NET MVC 3支持一项名为“Razor”的新视图引擎选项(除了继续支持/加强现有的.aspx视图引擎外).当编写一个视图模板时,Razor将所需的字符和击键数减少到最小,并保证一个快速.通 ...