Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13172   Accepted: 9368

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

思路:没得说,矩阵快速幂

代码如下:

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod = ;
const int N = ;//矩阵的维数,角标从0开始
struct Matrix
{
__int64 v[N][N];
Matrix()
{
memset(v,,sizeof(v));
}
};
//矩阵的乘法p1*p2
Matrix multi(Matrix p1,Matrix p2)
{
Matrix res;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
if(p1.v[i][j])//代码优化,是0的话就不用计算
for(int k=;k<N;k++)
res.v[i][k]=(res.v[i][k]+(p1.v[i][j]*p2.v[j][k]))%mod;
return res;
}
//矩阵的快速幂p^k
Matrix pow(Matrix p,__int64 k)
{
Matrix t;
for(int i=;i<N;i++)//初始化为单位矩阵
t.v[i][i]=;
while(k)
{
if(k&)
t=multi(t,p);
p=multi(p,p);
k=k>>;
}
return t;
} int main()
{
__int64 n;
Matrix e,ans;
e.v[][]=e.v[][]=e.v[][]=;
e.v[][]=;
while(scanf("%I64dd",&n)!=EOF&&n!=-)
{
ans = pow(e,n);
printf("%I64d\n",ans.v[][]);
}
return ;
}

poj3070矩阵快速幂求斐波那契数列的更多相关文章

  1. 51 Nod 1242 矩阵快速幂求斐波那契数列

    #include<bits/stdc++.h> #define mod 1000000009 using namespace std; typedef long long ll; type ...

  2. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  3. 矩阵快速幂--51nod-1242斐波那契数列的第N项

    斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...

  4. UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)

    题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...

  5. 矩阵快速幂 求斐波那契第N项

    #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> us ...

  6. python 快速幂求斐波那契数列

    先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...

  7. codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...

  8. POJ 3070 - 快速矩阵幂求斐波纳契数列

    这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...

  9. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

随机推荐

  1. html转义字符对照表

    常用的html转义字符 字符 描述 实体名称 实体编号 " quotation mark(双引号“半角”) " " ' apostrophe (单引号‘半角’) & ...

  2. jquery节点获取

    jQuery.parent(expr)  找父亲节点,可以传入expr进行过滤,比如$("span").parent()或者$("span").parent(& ...

  3. zabbix分布式系统监视

    http://blog.chinaunix.net/uid-25266990-id-3380929.html

  4. Spring官方文档翻译(1~6章)

    Spring官方文档翻译(1~6章) 转载至 http://blog.csdn.net/tangtong1/article/details/51326887 Spring官方文档.参考中文文档 一.S ...

  5. oracle两个客户端路径记录

    32 C:\WINDOWS\assembly\GAC_64\Oracle.DataAccess\2.112.3.0__89b483f429c4734264 C:\WINDOWS\Microsoft.N ...

  6. tp5月统计的bug

    月统计求和时 本月第一天没有统计到

  7. gj9 迭代器和生成器

    9.1 python的迭代协议 list内部实现了__iter__()协议(魔法函数),是可迭代对象,但还不是迭代器(迭代器需要实现__next__协议) 生成器实现了__iter__(),__nex ...

  8. python类的继承-1

    #!/usr/bin/python3 #类定义 class people: #定义基本属性 name = '' age = 0 #定义私有属性,私有属性在类外部无法直接进行访问 __weight = ...

  9. 20155225 2016-2017-2 《Java程序设计》第九周学习总结

    20155225 2016-2017-2 <Java程序设计>第九周学习总结 教材学习内容总结 JDBC入门 了解JDBC架构 使用JDBC API JDBC是用于执行SQL的解决方案,开 ...

  10. springMVC 开涛 Controller接口控制器

    通过注解实现控制器类,所以不用看Controller接口了.把之前的笔记保存下. 笔记(图片):http://pan.baidu.com/s/1mgMNDna 第三章看不太懂,3.2 3.3.只了解到 ...