Recently, I have read a paper about the integration of deep learing and neuroscience, which elaborates the two recent developments emerged within machine learning and presents three hypothesis about the brain in term of ANN's working mechanism. I will summarize some useful and intersting points. The URL is: http://biorxiv.org/content/early/2016/06/13/058545.

Abstract


Neuroscience has focused on the detailed implementation of computation, studying neural codes, dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost function, often using simple and relatively uniform initial architectures. Two recent developments have emerged within machine learning that create an opportunity to connect these seemingly divergent perspectives. First, structured architectures are used, including dedicated systems for attention, recursion and various forms of short- and long-term memory storage. Second, cost functions and training procedures have become more complex and are varied across layers and over time. Here we think about the brain in terms of these ideas. We hypothesize that

  1. the brain optimizes cost functions
  2. these cost functions are diverse and differ across brain locations and over development
  3. optimization operates within a pre-structured architecture matched to the computational problems posed by behavior.

Such a heterogeneously optimized system, enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely targeted to the needs of the organism. We suggest directions by which neuroscience could seek to refine and test these hypotheses.

Introduction


  1. Hypothesis 1 - The Brain optimizes cost functions.

An integration of deep learning and neuroscience的更多相关文章

  1. (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives

    Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...

  2. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  3. Deep learning:四十(龙星计划2013深度学习课程小总结)

    头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大 ...

  4. Deep Learning(1)-Introduction学习总结

    学习DL搁置很久了,终于下定决心开始咯~~ Deep Learning(Ian Goodfellow&&Yoshua Bengio&&Aaron Courville)- ...

  5. Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Pa ...

  6. (转) Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 Comm ...

  7. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  8. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  9. DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS

    DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS CME Group was one of several ...

随机推荐

  1. 3.纯 CSS 创作一个容器厚条纹边框特效

    原文地址:3.纯 CSS 创作一个容器厚条纹边框特效 没有啥好点子呀,不爽 HTML代码: <div class="box"> <div class=" ...

  2. windows10系统右键添加cmd命令

    https://blog.csdn.net/Mr_BEelzebub/article/details/78776104 首先,在桌面新建一个文本文档. Windows Registry Editor ...

  3. CSS镂空图片处理

    来源:http://www.zhangxinxu.com/wordpress/?p=5267,分享收藏 使用镂空图片,通过CSS改变颜色,达到图片切换的效果,可以同过背景图,然后改变背景色,从而达到图 ...

  4. .Net 常用开发工具

    ,net常用开发工具 LinqPad使用 LinqPad连接Oracle 使用 LINQPad 将linq转换为 lambda表达式 或者 SQL语句 LINQPad 4 初次使用心得 一.双击 二. ...

  5. oracle惯用缩写的含义

    $ORACLE_HOME/bin下的utilities解释Binary              First Available        Description----------------- ...

  6. mysql 变量名称不能与表字段一致

    my sql的变量名称不能与表字段名称相同不然会有各种异常问题 啃爹

  7. C++ 0x std::async 的应用

    #include <iostream> #include <thread> #include <mutex> #include <vector> #in ...

  8. Python3 ssl模块不可用的问题

    编译安装完Python3之后,使用pip来安装python库,发现了如下报错: $ pip install numpy pip is configured with locations that re ...

  9. 序列比对之Biostrings包

    基本概念 Biostrings包很重要的3个功能是进行Pairwise sequence alignment 和Multiple sequence alignment及 Pattern finding ...

  10. Jakarta项目

    Jakarta项目是ASF(The Apache Software Foundation)的一部分.ASF是一个非赢利组织,她鼓励基于开放的软件许可下进行合作.注重实效的开发,并提供各个领域的高质量软 ...