Deep Learning 资料总结
- GradientDescentOptimizer
This one is sensitive to the problem and you can face lots of problems using it, from getting stuck in saddle points to oscillating around the minimum and slow convergence. I found it useful for Word2Vec, CBOW and feed-forward architectures in general, but Momentum is also good. - AdadeltaOptimizer
Adadelta addresses the issues of using constant of linearly decaying learning rate. In case of recurrent networks it’s among the fastest. - MomentumOptimizer
If you learn a regression and find your loss function oscillating, switching from SGD to Momentum may be the right solution. - AdamOptimizer
Adaptive momentum in addition to the Adadelta features. - FtrlOptimizer
I haven’t used it myself, but from the paper I see that it’s better suited for online learning on large sparse datasets, like recommendation systems. - RMSPropOptimizer
This is a variant Adadelta that serves the same purpose - dynamic decay of a learning rate multiplier.
Deep Learning 资料总结的更多相关文章
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(下)
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine lea ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
随机推荐
- 转:oracle:win7手工卸载oracle数据库11g
环境:oracle 11g,win7,64bit 问题:oracle不正常安装.重新安装等情况需要卸载软件,然而oracle11g取消了界面卸载,改为deinstall.bat文件执行卸载.具体关于d ...
- 设计可以多选的按钮ChooseManyButton
设计可以多选的按钮ChooseManyButton 效果: 源码: ChooseManyButton.h 与 ChooseManyButton.m // // ChooseManyButton.h / ...
- 计算机中的换行符、回车符、\n、\r、\n\r 怎么区分啊?
'\r'是回车,前者使光标到行首,(carriage return)'\n'是换行,后者使光标下移一格,(line feed) \r 是回车,return\n 是换行,newline对于换行这个动作, ...
- JAVA入门之程序设计环境搭建
这篇文章写给刚接触或者想学JAVA的新朋友.学习JAVA,需要找一本好的入门书籍,推荐<Java从入门到精通>,然后就是JAVA程序设计开发环境的搭建. 首先,我们需要安装JAVA开发工具 ...
- 【2】python3字符串的比较(辨析is与==的区别)
PYTHON3基本数据类型(二.字符串) Python3字符串 ①字符串比较 1.比较字符串是否相同: ==:使用==来比较两个字符串内的value值是否相同 is:比较两个字符串的id值. 2.字符 ...
- 张高兴的 Windows 10 IoT 开发笔记:0.96 寸 I2C OLED
This is a Windows 10 IoT Core project on the Raspberry Pi 2/3, coded by C#. GitHub:https://github.co ...
- CORS跨域模型浅析及常见理解误区分析
CORS跨域资源共享是前后端跨域十分常用的一种方案,主要依赖Access-Control-Allow(ACA)系列header来实现一种协商性的跨域交互. 基本模型 其中的具体流程大致可以分为以下几步 ...
- linux下压缩与解压缩
版权声明: https://blog.csdn.net/zdp072/article/details/27584773 [ tar具体解释: ] -c: 建立压缩档案 -x:解压 -t:查看内容 -r ...
- UVa 1393 - Highways(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Azure云 windows平台 搭建ftp服务器注意事项
1.iis设置防火墙支持端口(1-65535自定义端口,一般3-5个都行) 2.客户端连接使用被动链接模式 3.endpoint终结点添加20,21,以及你自定义的防火墙支持端口. 4.本地防火墙添加 ...