ELU:
 
梯度下降优化方式:
 
  1. GradientDescentOptimizer
    This one is sensitive to the problem and you can face lots of problems using it, from getting stuck in saddle points to oscillating around the minimum and slow convergence. I found it useful for Word2Vec, CBOW and feed-forward architectures in general, but Momentum is also good.
  2. AdadeltaOptimizer 
    Adadelta addresses the issues of using constant of linearly decaying learning rate. In case of recurrent networks it’s among the fastest.
  3. MomentumOptimizer
    If you learn a regression and find your loss function oscillating, switching from SGD to Momentum may be the right solution.
  4. AdamOptimizer
    Adaptive momentum in addition to the Adadelta features.
  5. FtrlOptimizer
    I haven’t used it myself, but from the paper I see that it’s better suited for online learning on large sparse datasets, like recommendation systems.
  6. RMSPropOptimizer
    This is a variant Adadelta that serves the same purpose - dynamic decay of a learning rate multiplier.
 
CNN神经网络一些tricky的地方:
摘要:
1、适合Relu的参数初始化:w = np.random.randn(n) * sqrt(2.0/n) # current recommendation
2、LR: In practice, if you see that you stopped making progress on the validation set, divide the LR by 2 (or by 5), and keep going, which might give you a surprise.亲测有效
3、关于learning rate:
RNN学习:
 
FCN:http://blog.csdn.net/happyer88/article/details/47205839:Fully Convolutional Networks for Semantic Segmentation笔记
优点:
1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。
 
2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."
 
3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map
 
理解DL细节的不错的文章:
 
 
如果遇到了最后的输出值都一样的情况,可能的解决办法如下:
Hey, I had a similar issue with my own (hand-coded) CNN trying to get some results with the CIFAR-10 dataset. What I found was that I had forgotten to normalize the input images to some range that made sense with my weight scales. Try something like X = X / max(abs(X)) to put values between -1 and 1.
Another possibility is your weight initialization is causing many ReLU units to die. I usually initialize all weights with a small number times a normal Gaussian distribution. For wx+ b, b being the biases, you can try that + a small positive constant. I.e. b = weight_scale*random.randn(num, 1) + 0.1
Another idea — your sigmoid unit might be squashing your responses too much. They’re fairly uncommon in CNNs from what I understand, maybe just stick to ReLUs.
Last point — try testing on a small training batch (say 10–20 images) and just train until you overfit with 100% accuracy. That’s one way of knowing that your network is capable of doing something. I think these smaller tests are very important before investing hours or days into proper training, which is what these networks often require.
我最后的解决办法是:加了batch normalization,不过具体原因也没有确定
 
 
GAN的资料:

Deep Learning 资料总结的更多相关文章

  1. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  3. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  4. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  6. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(下)

    转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine lea ...

  9. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

随机推荐

  1. iOS中block类型大全

    iOS中block类型大全 typedef的block 作为属性的block 作为变量的block 作为方法变量入参的block 作为方法参数的block 无名block 内联函数的block 递归调 ...

  2. [控件] AngleGradientView

    AngleGradientView 效果 说明 1. 用源码产生带环形渐变色的view 2. 可以配合maskView一起使用 (上图中的右下角图片的效果) 源码 https://github.com ...

  3. 远程计算机 进程/服务 启动停止(WMI)

    WMI的远程管理需要其计算机的本地管理员组权限,例:gwmi win32_computersystem -computer win08r2d #在远程计算机上启动 notepad.exe 进程invo ...

  4. Mycat问题总结

    Mycat问题总结 一丶自增主键设置 Mycat提供了几种设置自增主键的方式 本地文件方式 数据库方式 服务器时间戳方式 分布式ZK-ID生成器 第一种和第二种只适合单点设置,对于集群不适用.第四种方 ...

  5. php 上传大文件主要涉及配置upload_max_filesize和post_max_size两个选项。

    今天在做上传的时候出现一个非常怪的问题,有时候表单提交可以获取到值,有时候就获取不到了,连普通的字段都获取不到了,苦思冥想还没解决,群里人问我upload_max_filesize的值改了吗,我说改了 ...

  6. 如何使用Jfreechart生成柱状图?

    JFreeChart是JAVA平台上的一个开放的图表绘制类库. 首先 (http://www.jfree.org /jfreechart) 总这个网址下载所需要的库,然后解压,放在某个地方. 我们默认 ...

  7. Undefined function or method 'deploywhich' for input arguments of type 'char'

    在进行matlab和java混合编程的时候.由matlab打包,把m文件转换为jar文件.供java调用.有时在Tomcat中调用此类jar类会出现如题或者以下的错误: ??? Error using ...

  8. Python 3 与 Javascript escape 传输确保数据正确方法和中文乱码解决方案

    注意:现在已不推荐 escape 函数,推荐使用  encodeURIComponent 函数,其中方法更简单,只需进行URL解码即可. 当然了,如下文章解决方案一样可行. 前几天用Python的Bo ...

  9. ansible-playbook快速入门

    一.yaml语法: 1. yaml语法编写 1.1 同层级的字段通过相同缩进表示 1.2 map结构里面key/value用‘:’来分隔 1.3 key/value可以同行写,也可以换行写,换行写必须 ...

  10. Java并发编程--1.Thread和Runnable

    创建线程 Java有两种方式创建线程, 继承Thread类和实现Runnable接口 继承Thread 步骤: 1.自定义一个类继承Thread类, 重写run方法 2.创建自定义类的对象,调用sta ...