【XSY2733】Disembrangle DP
题目描述
有一个\(3\times n\)的网格,一些格子里已经有棋子了,一些格子里还没有。
每次你可以选择往一个没有棋子的格子里放一个棋子,但要满足这个格子上下两个格子都有棋子或左右两个格子都有棋子。
你的任务是把这个网格填满。问你有几种填法。
\(n\leq 2000\)
题解
先判无解。
如果四个角没有棋子或在第\(1/3\)行有两个相邻的空格就无解。
然后DP。
可以对于每个连通块分开DP,然后把结果合并。
可以看出一个连通块只可能通过第\(2\)行相邻。
设\(f_{i,j,k}\)为前面\(i\)行,\((2,i)\)这个格子在前面所有空格中是第\(j\)个放的,\((2,i+1)\)是否需要在\((2,i)\)之前放 的方案数。
转移:枚举\((2,i+1)\)是在什么时候放的。
设\(c\)为第\(i+1\)列两边的空格数。
\(f_{i,j,1}\rightarrow f_{i+1,l,0}(l\leq j)\),上下都要先放:\(A(l-1,c)\)
\(f_{i,j,0}\rightarrow f_{i+1,l,1}(l>j)\),上下有一个后放:\(c(l-1)A(cnt-l,c-1)\),两个都后放:\(A(cnt-l,2)\)
$f_{i,j,0}\rightarrow f_{i+1,l,0} \(,上下都要先放:\)A(l-1,c)$
其中\(A(n,m)\)为排列数。
可以用前缀和优化DP。
还要考虑\((2,i)\)不是空格但\((1,i),(3,i)\)是空格的情况。
时间复杂度:\(O(n^2)\)
代码
$f_{i,j,1}\rightarrow f_{i+1,l,0}(l\leq j)$,上下要先放:$A(l-1,c)$
$f_{i,j,0}\rightarrow f_{i+1,l,1}(l>j)$,上下至少有一个没放:$c(l-1)A(cnt-l,c-1)$
$f_{i,j,0}\rightarrow f_{i+1,l,0}$,上下先放:$A(l-1,c)$
【XSY2733】Disembrangle DP的更多相关文章
- LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...
- 【专题】数位DP
[资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...
- 洛谷P4719 【模板】"动态 DP"&动态树分治
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...
- LG5056 【模板】插头dp
题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...
- 【专题】区间dp
1.[nyoj737]石子合并 传送门:点击打开链接 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这 ...
- 【BZOJ4976】宝石镶嵌 DP
[BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...
- NOJ 1111 保险箱的密码 【大红】 [区间dp]
传送门 保险箱的密码 [大红] 时间限制(普通/Java) : 1000 MS/ 3000 MS 运行内存限制 : 65536 KByte总提交 : 118 测 ...
- 【CF480D】Parcels DP
[CF480D]Parcels 题意:有一个栈,有n个物品,每个物品可以选或不选.如果选了第i个物品,则获得$v_i$的收益,且第i个物品必须在$in_i$时刻入栈,$out_i$时刻出栈.每个物品还 ...
- 【BZOJ4621】Tc605 DP
[BZOJ4621]Tc605 Description 最初你有一个长度为 N 的数字序列 A.为了方便起见,序列 A 是一个排列. 你可以操作最多 K 次.每一次操作你可以先选定一个 A 的一个子串 ...
随机推荐
- React-redux框架之connect()与Provider组件 用法讲解
react-redux 在react-redux 框架中,给我提供了两个常用的API来配合Redux框架的使用,其实在我们的实际项目开发中,我们完全可以不用react-redux框架,但是如果使用此框 ...
- 后台管理系统之邮件开发(Java实现)
一,功能点 后台管理系统,添加用户时.对注册的新用户邮箱发送初始密码. 二,代码实现 1.Mail实体类 public class Mail { private Set<String> r ...
- JavaScript对象访问器属性
对象访问器就是setter和getter,他们的作用就是 提供另外一种方法来获取或者设置对象的属性值, 并且在获取和设置的时候,可以用一定的其他操作. 看下面代码: <script> va ...
- Es5中的类和静态方法 继承
Es5中的类和静态方法 继承(原型链继承.对象冒充继承.原型链+对象冒充组合继承) // es5里面的类 //1.最简单的类 // function Person(){ // this.name='张 ...
- 下拉框、下拉控件之Select2
一.Select2的功能简介 select2插件给我们带来了更加友好的交互方式,比如查询控件展开后可通过关键字进行检索 例如: Select2也可以选择带查询控件的选择框... Select2也可以选 ...
- Laravel 的十八个最佳实践
本文翻译改编自 Laravel 的十八个最佳实践 这篇文章并不是什么由 Laravel 改编的 SOLID 原则.模式等. 只是为了让你注意你在现实生活的 Laravel 项目中最常忽略的内容. ...
- scrapy几种反反爬策略
一.浏览器代理 1.直接处理: 1.1在setting中配置浏览器的各类代理: user_agent_list=[ "Mozilla/5.0 (Windows NT 10.0; Win64; ...
- 使用IWMS的网站打开显示“未能加载文件或程序集”,解决方案
首先,会出现这样的问题原因是: 1.应用程序集里面有些事互相引用的,所以 问题有多种情况,第一.这个应用程序集出问题了: 2.它所依赖的那个程序集出问题了: 3.在项目生成的时候,代码里面有逻辑错误: ...
- AI算法第一天【概述与数学初步】
1. 机器学习的定义: 机器从数据中学习出规律和模式,以应用在新数据上作出预测的任务 2.学习现象: (1)语言文字的认知识别 (2)图像,场景,物体的认知和识别 (3)规则:下雨天要带雨伞 (4)复 ...
- Python——Flask框架——程序的基本结构
一.安装 pip install flask 二.初始化 from flask import Flask app = Flash(__name__) 三.路由:处理URL和函数之间的关系的程序称为路由 ...