生成函数和组合数学的灵活应用

LOJ #6261

题意:求一个数列的$ k$次前缀和


$ Solution:$

我们对原数列$ a$建生成函数$ A=\sum\limits_{i=0}^{n-1} a_ix^i $

求一次前缀和相当于将$ A$卷上生成函数$ B=\sum\limits_{i=0}^{n-1}x^i \pmod{x^n}$

即我们要求的就是$ A·B^{k-1} \pmod{x^n}$

直接快速幂是$ log^2$的,但是生成函数$ B$有一些巧妙的性质:

$ B^k(x)$的意义是选$ k$个自然数使得和为$ x$

可以通过插板法得知$ B^k(x)$=$ C_{x+k}^x$

然后求出$ A,B$之后$ NTT$卷积即可

时间复杂度:$ O(n \ log \ n)$


$ my \ code:$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,n,x,y,z,cnt,lim,m;
vector<int>A,B,R;
int inv[];
int ksm(int x,int y){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
void init(){
lim=;while(lim<=n+n)lim*=;
A.resize(lim);B.resize(lim);R.resize(lim);
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&)*(lim>>);
for(rt i=;i<n;i++)A[i]=read();
inv[]=inv[]=;B[]=;
for(rt i=;i<=n;i++)inv[i]=1ll*inv[p%i]*(p-p/i)%p;
for(rt i=;i<n;i++)B[i]=1ll*(i+m)*B[i-]%p*inv[i]%p;
}
void NTT(int n,vector<int>&A,int fla){
for(rt i=;i<n;i++)if(i>R[i])swap(A[i],A[R[i]]);
for(rt i=;i<n;i<<=){
int w=ksm(,(p-)//i);
for(rt j=;j<n;j+=i<<){
int K=;
for(rt k=;k<i;k++,K=1ll*K*w%p){
int x=A[j+k],y=1ll*K*A[i+j+k]%p;
A[j+k]=(x+y)%p,A[i+j+k]=(x-y)%p;
}
}
}
if(fla==-){
reverse(A.begin()+,A.end());int invn=ksm(n,p-);
for(rt i=;i<n;i++)A[i]=1ll*A[i]*invn%p;
}
}
int main(){
n=read();m=(read()-)%p;init();
NTT(lim,A,);NTT(lim,B,);
for(rt i=;i<lim;i++)A[i]=1ll*A[i]*B[i]%p;
NTT(lim,A,-);
for(rt i=;i<n;i++)writeln((A[i]+p)%p);
return ;
}

LOJ #6261 一个人的高三楼的更多相关文章

  1. loj #6261 一个人的高三楼 FFT + 组合数递推

    \(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...

  2. loj#6261. 一个人的高三楼(NTT+组合数学)

    题面 传送门 题解 统计\(k\)阶前缀和,方法和这题一样 然后这里\(n\)比较大,那么把之前的柿子改写成 \[s_{j,k}=\sum_{i=1}^ja_i{j-i+k-1\choose j-i} ...

  3. 【NTT】loj#6261. 一个人的高三楼

    去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...

  4. BZOJ3028 食物 和 LOJ6261 一个人的高三楼

    总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...

  5. XJOI 夏令营501-511NOIP训练18 高三楼

    参观完各种饭堂,学校还有什么著名的景点呢?当然是教室了,此时此刻我 们来到了高三楼.你会发现高三楼门口会有以身份认证系统,这东西还有着一段疼人的历史.每年的九月到来,高三的童鞋大多不习惯学校的作息时间 ...

  6. 「loj#6261」一个人的高三楼

    题目 显然存在一个这样的柿子 \[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j\] 我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是 ...

  7. [LOJ6261]一个人的高三楼

    loj description 给你一个长度为\(n\)的数列\(a_i\),求它的\(k\)次前缀和模\(998244353\).(就是做\(k\)次前缀和后的数列) \(n\le10^5,k\le ...

  8. 夏令营501-511NOIP训练18——高三楼

    传送门:QAQQAQ 题意:定义矩阵A与矩阵B重复,当且仅当A可以通过任意次行列交换得到B,例如下图A,B即为合法矩阵 现求对于$n*n$的矩阵有多少个不重复的矩阵 数据范围: 对于10%的数据 N≤ ...

  9. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

随机推荐

  1. [agc016B][Colorful Hats]

    题目链接 思路 首先,如果没人说谎那么序列中肯定只有一大一小两种数,假设大的数为x,小的数为y.因为对于每个人只有两种情况,要么自己与除自己外的某个人拥有相同的颜色,此时总颜色数就是这个人所能看到的颜 ...

  2. Java 数组+循环升级篇

    数组是一个变量,存储相同数据类型的一组数据(就是能存储很多数值的数据类型) 如果说声明一个变量就是在内存空间划出一块合适的空间,那么声明一个数组就是在内存空间划出一串连续的空间. 数组的基本要求 标识 ...

  3. ElasticSearch6.5.0 【安装IK分词器】

    不得不夸奖一下ES的周边资源,比如这个IK分词器,紧跟ES的版本,卢本伟牛逼!另外ES更新太快了吧,几乎不到半个月一个小版本就发布了!!目前已经发了6.5.2,估计我还没怎么玩就到7.0了. 下载 分 ...

  4. Educational Codeforces Round 53 (Rated for Div. 2) A Diverse Substring

    传送门 https://www.cnblogs.com/violet-acmer/p/10163375.html 题意: 给出串是多态的定义“长度为 n 的串 s ,当串 s 中所有字母出现的次数严格 ...

  5. This Gradle plugin requires a newer IDE able to request IDE model level 3. For Android Studio this means v3+

    在项目的gradle.properties配置文件中加入以下这句: gradle.properties中:android.injected.build.model.only.versioned = 3

  6. ajax请求封装函数

    写封装函数的套路 1.先写出这个函数原来的基本用法 2.写一个没有形参空函数,将上一步的代码直接作为函数体, 3.根据使用过程中,抽象出来需要变的东西作为形参 function ajax (metho ...

  7. IO以及file的一些基本方法

    IO定义:将内存的数据 持久化到设备上 这个动作称为输出 写 Output操作 把硬盘上的数据读取到内存 这个动作称为输入 读 Input 把上面这两种操作称为IO操作 File类的静态成员变量:pa ...

  8. 剑指Offer_编程题_8

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number ...

  9. MyBatis-DynamicSQL IF判断

    在写动态sql时发现字符串的判断没有生效 <if test="CLLX != null and CLLX != ''"> and a.CLLX = #{CLLX} &l ...

  10. JAVA-序列化深拷贝对象

    序列化拷贝方法 @SuppressWarnings("unchecked") public static <T extends Serializable> T clon ...