import matplotlib.pyplot as plt

X=[56.70466067,56.70466067,56.70466067,56.70466067,56.70466067,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,58.03256629,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,59.3604719,60.68837752,60.68837752,60.68837752,60.68837752,60.68837752,60.68837752,60.68837752,60.68837752,21.00466067,22.33256629,22.33256629,23.6604719,24.98837752,24.98837752,24.98837752,26.31628314,26.31628314,26.31628314,26.31628314,27.64418876,27.64418876,27.64418876,27.64418876,27.64418876,28.97209438,28.97209438,28.97209438,28.97209438,28.97209438,28.97209438,28.97209438,30.3,30.3,30.3,30.3,31.62790562,31.62790562,31.62790562,32.95581124,32.95581124,32.95581124,34.28371686,34.28371686,34.28371686,35.61162248,35.61162248,35.61162248,36.9395281,89.10466067,89.10466067,90.43256629,90.43256629,93.08837752,93.08837752,93.08837752,93.08837752,94.41628314,94.41628314,94.41628314,94.41628314,94.41628314,94.41628314,94.41628314,95.74418876,95.74418876,95.74418876,95.74418876,95.74418876,95.74418876,95.74418876,95.74418876,97.07209438,97.07209438,97.07209438,97.07209438,97.07209438,97.07209438,97.07209438,97.07209438,98.4,98.4,98.4,98.4,98.4,99.72790562,99.72790562,99.72790562,99.72790562,101.0558112,101.0558112,101.0558112,101.0558112,102.3837169,102.3837169,102.3837169,103.7116225,103.7116225,103.7116225,103.7116225,105.0395281,105.0395281,105.0395281,106.3674337,106.3674337,64.40466067,64.40466067,65.73256629,65.73256629,65.73256629,65.73256629,65.73256629,67.0604719,67.0604719,67.0604719,67.0604719,68.38837752,68.38837752,68.38837752,68.38837752,69.71628314,69.71628314,69.71628314,69.71628314,71.04418876,71.04418876,71.04418876,71.04418876,71.04418876,72.37209438,72.37209438,72.37209438,72.37209438,72.37209438,73.7,73.7,73.7,73.7,75.02790562,75.02790562,75.02790562,75.02790562,76.35581124,76.35581124,76.35581124,77.68371686,77.68371686,48.60466067,49.93256629,49.93256629,49.93256629,49.93256629,49.93256629,49.93256629,49.93256629,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,51.2604719,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,52.58837752,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,53.91628314,55.24418876,55.24418876,55.24418876,55.24418876,55.24418876,55.24418876,55.24418876,55.24418876,55.24418876,56.57209438,56.57209438,56.57209438,56.57209438,56.57209438,56.57209438,56.57209438,56.57209438,56.57209438,57.9,57.9,57.9,57.9,57.9,57.9,59.22790562,59.22790562,59.22790562,59.22790562,60.55581124,60.55581124,60.55581124,61.88371686,61.88371686,61.88371686,63.21162248,63.21162248]
Y=[82.04418876,83.37209438,84.7,86.02790562,87.35581124,80.71628314,82.04418876,83.37209438,84.7,86.02790562,87.35581124,88.68371686,90.01162248,78.0604719,79.38837752,80.71628314,82.04418876,83.37209438,84.7,88.68371686,90.01162248,91.3395281,76.73256629,78.0604719,79.38837752,80.71628314,82.04418876,83.37209438,87.35581124,88.68371686,91.12790562,92.45581124,93.78371686,93.78371686,91.12790562,93.78371686,95.11162248,92.45581124,93.78371686,95.11162248,96.4395281,91.12790562,92.45581124,95.11162248,96.4395281,97.76743371,80.50466067,81.83256629,91.12790562,95.11162248,96.4395281,97.76743371,99.09533933,80.50466067,96.4395281,97.76743371,99.09533933,96.4395281,97.76743371,99.09533933,95.11162248,97.76743371,99.09533933,95.11162248,96.4395281,97.76743371,95.11162248,96.4395281,97.76743371,96.4395281,78.02790562,79.35581124,78.02790562,79.35581124,71.38837752,82.01162248,83.3395281,84.66743371,72.71628314,74.04418876,75.37209438,76.7,82.01162248,83.3395281,84.66743371,74.04418876,75.37209438,76.7,78.02790562,79.35581124,83.3395281,84.66743371,85.99533933,74.04418876,75.37209438,76.7,78.02790562,79.35581124,80.68371686,84.66743371,85.99533933,74.04418876,78.02790562,79.35581124,80.68371686,82.01162248,74.04418876,80.68371686,82.01162248,83.3395281,80.68371686,82.01162248,83.3395281,84.66743371,82.01162248,83.3395281,84.66743371,80.68371686,82.01162248,83.3395281,84.66743371,80.68371686,82.01162248,83.3395281,79.35581124,80.68371686,58.34418876,59.67209438,55.68837752,57.01628314,58.34418876,59.67209438,66.31162248,54.3604719,55.68837752,57.01628314,67.6395281,53.03256629,54.3604719,55.68837752,67.6395281,53.03256629,54.3604719,55.68837752,57.01628314,53.03256629,54.3604719,55.68837752,57.01628314,58.34418876,53.03256629,54.3604719,55.68837752,57.01628314,58.34418876,51.70466067,53.03256629,57.01628314,58.34418876,51.70466067,53.03256629,58.34418876,70.29533933,51.70466067,53.03256629,58.34418876,53.03256629,57.01628314,46.27209438,42.28837752,43.61628314,44.94418876,46.27209438,47.6,48.92790562,50.25581124,40.9604719,42.28837752,43.61628314,44.94418876,46.27209438,47.6,48.92790562,50.25581124,51.58371686,52.91162248,40.9604719,42.28837752,43.61628314,44.94418876,46.27209438,47.6,48.92790562,50.25581124,51.58371686,52.91162248,54.2395281,42.28837752,43.61628314,44.94418876,46.27209438,47.6,48.92790562,50.25581124,51.58371686,52.91162248,54.2395281,55.56743371,42.28837752,43.61628314,44.94418876,46.27209438,47.6,51.58371686,52.91162248,54.2395281,55.56743371,40.9604719,42.28837752,46.27209438,47.6,51.58371686,52.91162248,54.2395281,55.56743371,56.89533933,40.9604719,46.27209438,47.6,54.2395281,55.56743371,56.89533933,39.63256629,40.9604719,54.2395281,55.56743371,39.63256629,40.9604719,55.56743371,52.91162248,54.2395281,55.56743371,54.2395281,55.56743371] #绘制数据分布图
plt.scatter(X,Y, c = "k", marker='o', label='countries')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend(loc=2)
plt.show()

离散点绘图

DBSCAN

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法。

基本概念:

所需参数:
半径:Eps
Eps半径内指定的数目(阈值):MinPts
 
数据点分为三:
1. 核心点:在半径Eps内含有超过MinPts数目的点
2. 边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内
3. 噪音点:既不是核心点也不是边界点的点
 
概念:
1. Eps领域:半径Eps之内所有点的合集
2. 直接密度可达(密度直达):核心点X1对Eps领域内的任意点都是直接密度可达
3. 密度可达:设数据点点序列p(1),p(2),p(3),…,p(n),其中p(1)是核心对象,p(2)是从p(1)出发直接密度可达,p(n)从p(1)出发是密度可达的

算法优点:

1. 不需要如同K-means一样设置初始类别个数
2. 可以对任意形状的稠密数据集进行聚类
3. 对噪点有抗性
4. 结果不会有偏倚(不是指每次结果完全一样,而是大部分相同,不排除个别点)

算法缺点:

1. 数据密度不均匀时难以使用
2. 样本集越大,收敛时间越长,可用K-D树进行优化
3. Eps,MinPts阈值难以界定,可用绘制k-距离曲线等方法界定
from sklearn.datasets.samples_generator import make_moons
import matplotlib.pyplot as plt
import time
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN X, y_true = make_moons(n_samples=1000, noise=0.15) #y_true是提前做绘图分类标识 plt.scatter(X[:, 0], X[:, 1], c=y_true)
plt.show() # Kmeans
t0 = time.time()
kmeans = KMeans(init='k-means++', n_clusters=2, random_state=8).fit(X)
t = time.time() - t0
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_)
plt.title('time : %f' % t)
plt.show() # DBSCAN
t0 = time.time()
dbscan = DBSCAN(eps=.1, min_samples=6).fit(X)
t = time.time() - t0
plt.scatter(X[:, 0], X[:, 1], c=dbscan.labels_)
plt.title('time : %f' % t)
plt.show()

代码

原数据绘图

K-mean聚类绘图

DBSCAN聚类

[MCM] K-mean聚类与DBSCAN聚类 Python的更多相关文章

  1. DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式

    一.DBSCAN聚类概述 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现"球形"聚簇的缺点. DBSCAN的核心思想是从某个核心点出发,不断向密 ...

  2. (数据科学学习手札15)DBSCAN密度聚类法原理简介&Python与R的实现

    DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: ht ...

  3. 聚类算法:K均值、凝聚层次聚类和DBSCAN

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  4. 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  5. K均值聚类和DBSCAN介绍

    K均值(K-means)聚类 问题定义:给定数据$\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_n$,将它们分到不同的$K$个簇(cluster)中.定义$\vec{c}=(c ...

  6. 基于密度聚类的DBSCAN和kmeans算法比较

    根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据 ...

  7. 用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...

  8. 机器学习入门-DBSCAN聚类算法

    DBSCAN 聚类算法又称为密度聚类,是一种不断发张下线而不断扩张的算法,主要的参数是半径r和k值 DBSCAN的几个概念: 核心对象:某个点的密度达到算法设定的阈值则其为核心点,核心点的意思就是一个 ...

  9. 简单易学的机器学习算法—基于密度的聚类算法DBSCAN

    简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别.    ...

随机推荐

  1. nginx配置反向代理和负载均衡

    一.反向代理 说明:应该有一个nginx服务器有多个应用服务器(可以是tomcat),本文使用一台虚拟机,安装一个nginx,多个tomcat,来模拟 upstream tomcats{ server ...

  2. 详解Java中对象的软、弱和虚引用的区别

    对于大部分的对象而言,程序里会有一个引用变量来引用该对象,这是最常见的引用方法.除此之外,java.lang.ref包下还提供了3个类:SoftReference.WeakReference和Phan ...

  3. 纯CSS+HTML实现checkbox的思路与实例

    checkbox应该是一个比较常用的html功能了,不过浏览器自带的checkbox往往样式不怎么好看,而且不同浏览器效果也不一样.出于美化和统一视觉效果的需求,checkbox的自定义就被提出来了. ...

  4. jQuery插件开发进阶

    jQuery插件开发模式 软件开发过程中是需要一定的设计模式来指导开发的,有了模式,我们就能更好地组织我们的代码,并且从这些前人总结出来的模式中学到很多好的实践. 根据<jQuery高级编程&g ...

  5. BZOJ3687: 简单题(dp+bitset)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1138  Solved: 556[Submit][Status][Discuss] Descripti ...

  6. div中img依据不同分辨率居中显示,超出部分隐藏

    在做banner居中时 碰到的问题,知道可以用背景图实现居中显示,但是内心是想深究下的,故找到几种办法收集一下,后面两种真的是奇技淫巧 来着下面两处 https://www.zhihu.com/que ...

  7. Ubuntu快捷键、Ubuntu终端常用命令

    Ubuntu快捷键 0.Ctrl + Alt + t 打开终端,在终端命令行操作 1. Ctrl + W: 关闭当前 Nautilus 窗口 2. Ctrl+T: 在 Nautilus 打开新的 Ta ...

  8. mysql之事务管理

    本文内容: 什么是事务管理 事务管理操作 回滚点 默认的事务管理 首发日期:2018-04-18 什么是事务管理: 可以把一系列要执行的操作称为事务,而事务管理就是管理这些操作要么完全执行,要么完全不 ...

  9. [20181109]12cR2 的pre_page_sga参数

    [20181109]12cR2 的pre_page_sga参数.txt --//12CR2改变了参数pre_page_sga设置为True.设置为true有好处也有缺点.--//先看看官方的定义:ht ...

  10. C#-类(九)

    类的定义 类是描述具有相同特征与行为的事物的抽象,类内部包含类的特征和类的行为 类支持继承 类的定义是关键字class为标志 类的格式 访问标识符 class 类名 { 类主体 } 访问标识符:指定了 ...