题意

题目链接

给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少

Sol

TJOI怎么净出板子题

二分答案之后直接二分图匹配check一下。

多读读题就会发现题目要求的就是可相交的最小路径覆盖,那么按照套路先floyd一遍,如果能联通的话就再二分图中加边,然后判一下最大匹配数就行了。刚开始以为因为有的点可以不选,要在匈牙利的时候进行玄学贪心,其实是不用的,因为我们已经求过传递闭包了。所以直接求就是对的

因为\(M \leqslant 500\),所以Floyd的时候要用bitset优化一下

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define ull signed long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1001, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN], ans[MAXN], vis[MAXN], tim = 1, link[MAXN], st[MAXN], top;
bitset<MAXN> can[MAXN];
bool dfs(int x) {
for(int i = 1; i <= top; i++) {
if(can[st[x]][st[i]]) {
if(vis[i] == tim) continue;
vis[i] = tim;
if(!link[i] || (dfs(link[i]))) {link[i] = x; return 1;}
}
}
return 0;
}
bool check(int val) {
memset(link, 0, sizeof(link)); top = 0;
for(int i = 1; i <= M; i++) if(a[i] < val) st[++top] = i;
int ans = 0;
for(int i = 1; i <= top; i++, tim++) if(dfs(i)) ans++;
return top - ans <= N + 1;
}
signed main() {
N = read(); M = read();
int mx = 0;
for(int i = 1; i <= M; i++) {
a[i] = read(); int k = read(); mx = max(a[i], mx);
for(int j = 1; j <= k; j++) can[i][read()] = 1;
}
for(int k = 1; k <= M; k++)
for(int i = 1; i <= M; i++)
if(can[i][k])
can[i] |= can[k];
int l = 0, r = mx, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if(check(mid)) ans = mid, l = mid + 1;
else r = mid - 1;
}
if(ans >= mx) puts("AK");
else cout << ans;
return 0;
}
/* */

洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)的更多相关文章

  1. 洛谷P4589 [TJOI2018]智力竞赛 【floyd + 二分 + KM】

    题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DA ...

  2. [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)

    [CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...

  3. 洛谷 P1824 进击的奶牛 【二分答案】(求最大的最小值)

    题目链接:https://www.luogu.org/problemnew/show/P1824 题目描述 Farmer John建造了一个有N(2<=N<=100,000)个隔间的牛棚, ...

  4. 洛谷P3964 [TJOI2013]松鼠聚会 [二分答案,前缀和,切比雪夫距离]

    题目传送门 松鼠聚会 题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x,y表示, ...

  5. 洛谷P3576 [POI2014]MRO-Ant colony [二分答案,树形DP]

    题目传送门 MRO-Ant colony 题目描述 The ants are scavenging an abandoned ant hill in search of food. The ant h ...

  6. 洛谷P1462通往奥格瑞玛的道路——二分答案最短路

    题目:https://www.luogu.org/problemnew/show/P1462 最大值最小问题,二分答案. 代码如下: #include<iostream> #include ...

  7. 洛谷3933 Chtholly Nota Seniorious 二分答案+贪心

    题目链接 题意 给你一个N*M的矩阵 (N,M <=2000)  把他分成两部分 使两部分的极差较大的一个最小  求这个最小值.然后分矩阵的要求是:每个部分内部的方块之间,可以通过上下左右相互到 ...

  8. BZOJ 4443 [Scoi2015]小凸玩矩阵(二分答案+二分图匹配)

    [题目链接]http://www.lydsy.com/JudgeOnline/problem.php?id=4443 [题目大意] 从矩阵中选出N个数,其中任意两个数字不能在同一行或同一列 求选出来的 ...

  9. BZOJ 2547: [Ctsc2002]玩具兵(二分答案+二分图匹配)

    传送门 解题思路 可以发现天兵不用管,答案的一个上界是\(2*k\),就是天兵一个个换.刚开始写了个拆\(6\)点的网络流,调了半天发现自己假了..说说正解,首先可以发现交换士兵其实就是种类的交换,那 ...

随机推荐

  1. swiper在vue项目中的循环轮播bug以及点击事件

    一般的,如果是静态数据(本地数据),可以直接在mounted生命周期中初始化,循环轮播.自动播放都比较正常. 但是,如果是动态从后台获取数据的话,采用上述方法会发现,轮播图无法自动播放,也无法拖拽. ...

  2. 安卓之必须了解的实时通信(Socket)

    Socket: 有服务器和客户端之分,其是对TCP/IP的封装,使用IP地址加端口,确定一个唯一的点.在Internet上的主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket ...

  3. AccessTokenValidation3 源码分析 jwttoken验证流程图

    processon分享地址:https://www.processon.com/view/link/5c6a0b59e4b08a7683c40fc5

  4. CentOS7安装详解

    本文基于vmware workstations进行CentOS7安装过程展示,关于vmware workstations安装配置本人这里不再介绍,基本过程相当于windows下安装个软件而已. 1.打 ...

  5. Intellij IDEA神器居然还有这些小技巧

    概述 Intellij IDEA真是越用越觉得它强大,它总是在我们写代码的时候,不时给我们来个小惊喜.出于对Intellij IDEA的喜爱,我决定写一个与其相关的专栏或者系列,把一些好用的Intel ...

  6. AutoCloseable的用法

    今天学习JDBC的时候查看了接口Statement的executeQuery()方法的时候偶然发现了一个新的接口: 看到红笔圈出的那句话当时没反应过来,才知道是接口的多继承,但是后面的那个接口并没有见 ...

  7. java相关知识点

    Java基础.语法 1. 简述Java跨平台原理 2. Java的安全性 3. Java三大版本 4. 什么是JVM?什么是JDK? 什么是JRE? 5. Java三种注释类型 6. 8种基本数据类型 ...

  8. Set存储元素为啥是唯一的(以HashSet为例源码分析)

    本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作,如有错误之处忘不吝批评指正! 说些废话 以前面试的时候会遇到有人问Set 和list的区别 这个很好答,但 ...

  9. 举个栗子看如何做MySQL 内核深度优化

    本文由云+社区发表 作者介绍:简怀兵,腾讯云数据库高级工程师,负责腾讯云CDB内核及基础设施建设:先后供职于Thomson Reuters和YY等公司,PTimeDB作者,曾获一项发明专利:从事MyS ...

  10. java ReentrantLock

    介绍 ReentrantLock称为重入锁,比内部锁synchonized拥有更强大的功能,它可中断.可定时.设置公平锁 [注]使用ReentrantLock时,一定要释放锁,一般释放放到finnal ...