http://poj.openjudge.cn/practice/C18H

题目

算平均数用到公式\[\bar{x}=\frac{x_1+x_2+x_3+\cdots+x_n}{n}\]

但如果用int型计算,那么\(x_1+x_2+x_3+\cdots+x_n\)可能会超过\(2^{31}-1\)

算6个数的平均数可以这么算

Calculate the average of\(x_1,x_2,x_3\)
\[\bar{x}_1=\frac{x_1+x_2+x_3}{3}\]
Calculate the average of\(x_4,x_5,x_6\)
\[\bar{x}_2=\frac{x_4+x_5+x_6}{3}\]
Calculate the average of\(\bar{x}_1,\bar{x}_2\)
\[\bar{x}=\frac{\bar{x}_1+\bar{x}_2}{2}\]
In this way, as you can see, we actually add up at most $3$ integers at one time, instead of adding all the $6$ integers together. Therefore, as long as all the integers are not greater than \(\left\lfloor {\left( {{2^{31}} - 1} \right)/3} \right\rfloor \), we are not at risk of getting an overflow result. Thus, we call the value $71582782$ the Safe Upper Bound of $6$.

输入N,输出N的安全上界

题解

某日无聊翻openjudge的poj队伍,发现了PKU的校赛,想找一道最简单的题满足虚荣心:(

看了好久没看懂在干什么,看样例用计算器猜是$2^{31}-1$除以N的最大素因子

数论不行:(

照着书抄了个Pollard Rho+Miller-Rabin算法 TLE(其实根本就不知道复杂度

于是尝试Eratosthenes线性筛……可是需要开的数组太大……貌似无解了

其实还是自己太菜:(

为什么可以这么做呢……猜可能和这个过程有关
\[\left\lfloor {\frac{{a + b}}{2}} \right\rfloor  = \frac{{a + b}}{2} - \frac{{\left( {a + b} \right)\% 2}}{2}\]
\[\left\lfloor {\frac{{c + d}}{2}} \right\rfloor  = \frac{{c + d}}{2} - \frac{{\left( {c + d} \right)\% 2}}{2}\]
\[\left\lfloor {\frac{{a + b}}{2}} \right\rfloor  + \left\lfloor {\frac{{c + d}}{2}} \right\rfloor  = \frac{{a + b + c + d}}{2} - \frac{{a\% 2 + b\% 2 + c\% 2 + d\% 2}}{2}\]
\[\left\lfloor {\frac{{\left\lfloor {\frac{{a + b}}{2}} \right\rfloor  + \left\lfloor {\frac{{c + d}}{2}} \right\rfloor }}{2}} \right\rfloor  = \frac{{a + b + c + d}}{4} - \frac{{a\% 2 + b\% 2 + c\% 2 + d\% 2}}{4}\]
至于\(\frac{{a\% 2 + b\% 2 + c\% 2 + d\% 2}}{4}\)是否等于\({\left( {a + b + c + d} \right)\% 4}\)

我还是菜鸟,等以后变强了再看看……推广也只有以后了

空间问题抄了UESTC大神的代码

https://vjudge.net/solution/15934751

看了以后感觉自己真的太菜了:(

这差距不是一点啊……还得加油

PKU2018校赛 H题 Safe Upper Bound的更多相关文章

  1. 2013年省赛H题

    2013年省赛H题你不能每次都快速幂算A^x,优化就是预处理,把10^9预处理成10^5和10^4.想法真的是非常巧妙啊N=100000构造两个数组,f1[N],间隔为Af2[1e4]间隔为A^N,中 ...

  2. 2018WFU校赛B题

    我们在ACM的题目中已经了解了什么是ACM了,ACM还是很残酷的了(ಥ _ ಥ),那么现在你就要解决一个ACM最简单的题了,简单到省赛和区域赛都不会出这种简单的题.ls很强,即使每年都在ACM这个大坑 ...

  3. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  4. HDUOJ-------2493Timer(数学 2008北京现场赛H题)

    Timer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. Sdut 2409 The Best Seat in ACM Contest(山东省第三届ACM省赛 H 题)(模拟)

    题目描述 Cainiao is a university student who loves ACM contest very much. It is a festival for him once ...

  6. 2017CCPC中南地区赛 H题(最长路)

    题目地址:202.197.224.59/OnlineJudge2/ 来自湘潭大学OJ. 这里用到了一个树的直径(树中的最长边)的结论:当你找到一棵树的最长边后,这个树中所有点的最长边必定和这条边的两个 ...

  7. 牛客网 2018年东北农业大学春季校赛 L题 wyh的天鹅

    链接:https://www.nowcoder.com/acm/contest/93/L来源:牛客网 时间限制:C/C++ 3秒,其他语言6秒空间限制:C/C++ 262144K,其他语言524288 ...

  8. 上海高校金马五校赛 F题:1 + 2 = 3?

    链接:https://www.nowcoder.com/acm/contest/91/F来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其他语言26214 ...

  9. ACM-ICPC 2018青岛网络赛-H题 Traveling on the Axis

    题目:略(不知道怎么从ZOJ搬题) 地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4054 把这题的每个点分成两种情况 ...

随机推荐

  1. 高并发下的Java数据结构(List、Set、Map、Queue)

    由于并行程序与串行程序的不同特点,适用于串行程序的一些数据结构可能无法直接在并发环境下正常工作,这是因为这些数据结构不是线程安全的.本节将着重介绍一些可以用于多线程环境的数据结构,如并发List.并发 ...

  2. mybatis源码-Mapper解析之SQL 语句节点解析(一条语句对应一个MappedStatement)

    目录 一起学 mybatis 0 <sql> 节点解析 1 解析流程 2 节点解析 2.1 解析流程 2.2 <include> 节点的解析 2.3 Node.ELEMENT_ ...

  3. HBase篇(2)-数据模型与操作

    HBase其实就是一个数据库,无非就是存储和增删改查,那我们先从数据模型说起把 这里有一张表,是用关系型数据库的思维画出来的表,这样比较易于理解: 概念 Table(表格) 没啥说的,和关系型数据库一 ...

  4. Item 16: 让const成员函数做到线程安全

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 如果我们在数学领域里工作,我们可能会发现用一个类来表示多项式会很方 ...

  5. 【开源】Skatch 正式发布 - 极速渲染抽象派草图

    极速渲染抽象派草图 DEMO Simple Letter 简介 Skatch 这个词由 sketch wechart abstract cax 混合而成的一个新词,代表了cax wechart 抽象艺 ...

  6. nginx 之 proxy_redirect详解

    proxy_redirect 语法:proxy_redirect [ default|off|redirect replacement ]  默认值:proxy_redirect default  使 ...

  7. Solrcloud(Solr集群)

    Solrcloud(Solr集群) Solrcloud介绍: SolrCloud(solr集群)是Solr提供的分布式搜索方案. 当你需要大规模,容错,分布式索引和检索能力时使用SolrCloud. ...

  8. python的UnboundLocalError: local variable 'xxx' referenced b

    一.意思: 本地变量xxx引用前没定义. 二.错误原因     在于python没有变量的声明 , 所以它通过一个简单的规则找出变量的范围 :如果有一个函数内部的变量赋值 ,该变量被认为是本地的,所以 ...

  9. 软件工程(FZU2015) 赛季得分榜,第六回合

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  10. centos/ubuntu 双击运行 .sh(shell)文件

    centos 创建桌面双击启动程序(更改图标) - Feythin Lau - 博客园http://www.cnblogs.com/feiyuliu/archive/2012/11/29/279503 ...