今天看到一篇不错的博文,有感,记录下来,相对来说讲到了本质,也很容易理解。https://www.cnblogs.com/think-and-do/p/6509239.html

首先,老生常谈,还是那三大分布

T,卡方,F,(正态不是三大)

T是厚尾的,对小样本量做检验,对于样本难获得的领域很有用,比如医药,生物,前面写过一个关于T检验的记录。

卡方检验用来做独立性检验和符合某个标准分布(正态检验)

n个相互独立的随机变量服从正态分布,他们的平方和构成一个新的随机变量,服从卡方分布,n为自由度。

检查实际结果与期望结果之间何时存在显著差异。
1、检验拟合优度:也就是说可以检验一组给定数据与指定分布的吻合程度。如:用它检验抽奖机收益的观察频数与我们所期望的吻合程度。     

2、检验两个变量的独立性:通过这个方法检查变量之间是否存在某种关系。

F分布用来做方差分析,具体见前面的博文

但是重点是要说这篇博文的精妙之处。

有三个不同学校的学生英语考试成绩不同,原因是什么?为什么不用T检验

如果使用T检验,需要3次,如果研究10个学校,需要45个,组合次数多,降低可靠程度,如果我们做两次检验,每次都为0.05的显著性水平,那么不犯Ⅰ型错误的概率就变为0.95×0.95=0.90。此时犯Ⅰ型错误的概率则为1-0.90=0.10,即至少犯一次Ⅰ型错误的概率翻了一倍。若做10次检验的话,至少犯一次Ⅰ型错误的概率将上升到0.40(1-0.952),而10次检验结论中都正确的概率只有60%。所以说采用Z检验或t检验随着均数个数的增加,其组合次数增多,从而降低了统计推论可靠性的概率,增大了犯错误的概率。

完全随机设计是采用完全随机化的分组方法,将全部实验对象分配到g个处理组(水平组),各组分别接受不同的处理,试验结束后比较各组均数之间的差别有无统计学意义。

【例子】

某医生为研究一种四类降糖新药的疗效,以统一的纳入标准和排除标准选择了60名2型糖尿病患者,按完全随机设计方案将患者分为三组进行双盲临床试验。其中,降糖新药高剂量组21人、低剂量组19人、对照组20人。对照组服用公认的降糖药物,治疗4周后测得其餐后2小时血糖的下降值(mmol/L),结果如表9-1所示。问治疗4周后,餐后2小时血糖下降值的三组总体平均水平是否不同?

方差分析的基本思想:总变异分解为多个部分,每个部分由某因素的作用来解释,通过将某因素所致的变异与随机误差比较,从而推断该因素对测定结果有无影响。变异程度除与离均差平方和的大小有关外,还与自由度有关,将各部分离均差平方和除以自由度,比值称为均方差MS。

如果各组样本来自相同总体,无处理因素的作用,则组间变异同组内变异一样,只反应随机误差作用的大小。

组间均方与组内均方的比值称为F统计量:

F值接近于1,就没有理由拒绝H0(来自相同总体),反之,F值越大,拒绝H0的理由越充分。当H0成立时,F统计量服从F分布,自由度v1和v2,Fv1,v2

v1=组间自由度 = g-1 = 3-1 v2=组内自由度=N-g= 60-3 = 57,查F分布表得到P<0.01,按α=0.05水准,拒绝H0,接受H1有统计学意义,可认为2型糖尿病患者治疗4周,其餐后2小时血糖的总体平均水平不全相同。

方差分析的结果若拒绝H0,接受H1,不能说明各组总体均数两两间都有差别。如果要分析哪些两组间有差别,要进行多个均数间的多重比较(卡方检验)。当g =2时,方差分析的结果与两样本均数比较的t 检验等价 t=sqrt(F)。

上例中的自由度计算非常具有代表意义,这是最简单和基础的知识,但是很重要,因此再记录一遍,加深印象。

又谈F分布的更多相关文章

  1. F分布

    定义:设X1服从自由度为m的χ2分布,X2服从自由度为n的χ2分布,且X1.X2相互独立,则称变量F=(X1/m)/(X2/n)所服从的分布为F分布,其中第一自由度为m,第二自由度为n.[1] F分布 ...

  2. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  3. 统计学中z分布、t分布、F分布及χ^2分布

    Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X ...

  4. 抽样分布(3) F分布

    定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密 ...

  5. 使用Excel绘制F分布概率密度函数图表

    使用Excel绘制F分布概率密度函数图表 利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表. F分布的概率密度函数如下图所示: 其中:μ为分子自由度,ν为分母自由度 ...

  6. t分布|F分布|点估计与区间估计联系|

    应用统计学 推断统计需要样本形容总体,就要有统计量.注意必须总体是正态分布,否则统计量的分布不能得到.卡方分布和t分布只要样本大于30都近似于正态分布. t分布和F分布推导及应用(图): 总体比例是π ...

  7. 数理统计11:区间估计,t分布,F分布

    在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾. 首先,我们讨论了正态分布两个参数--均值.方差的点估计,给出了它们的分布信息,并指出它们是相互独立的:然后,我们讨论 ...

  8. T分布、卡方分布、F分布

    请参考: https://www.cnblogs.com/think-and-do/p/6509239.html

  9. visual studio cl -d1reportSingleClassLayout查看内存f分布

    C:\Users\Administrator\Desktop\cppsrc>cl -d1reportSingleClassLayoutTeacher virtual.cpp 用于 x86 的 M ...

随机推荐

  1. java 测试框架 TestNG

    Java中print.printf.println的区别 printf主要是继承了C语言的printf的一些特性,可以进行格式化输出 print就是一般的标准输出,但是不换行 println和prin ...

  2. Invoke-customs are only supported starting with Android O (--min-api 26) Message{kind=ERROR,……

    https://www.jianshu.com/p/434928537a90 在我使用构建版本gradle 26但是在将buildtoolsversion更改为27之后,就像这个图像     错误:e ...

  3. Qt编写自定义控件36-图片浏览器

    一.前言 本控件主要用来作为一个简单的图片浏览器使用,可以上下翻页显示图片,图片还可以开启过度效果比如透明度渐变,应用场景有查看报警图片运行图片等.此控件非本人原创,来源于网络,我只是修正了好多处BU ...

  4. RegexBuddy 4.7.0 x64 评估试用到期,无限试用的办法

    http://www.cnblogs.com/inrg/p/6491043.html 最后对比发现,在注册表 HKEY_USERS 节点下存在一个用户的项,形如 "S-1-5-21-1609 ...

  5. LODOP直接导出图片不弹框

    之前有博文测试了导出图片的图片长度关系,是直接弹窗的选择保存路径的方式:Lodop导出图片,导出单页内容的图片最近测试下不弹窗保存图片是否可以,样例是保存的excel,测试了下图片,图片也是可以的,该 ...

  6. es6 map()和filter()详解【转】

    原文地址:http://www.zhangxinxu.com/wordpress/2013/04/es5%e6%96%b0%e5%a2%9e%e6%95%b0%e7%bb%84%e6%96%b9%e6 ...

  7. jenkins:集成sonar代码扫描+发送邮件

    前提: Jenkins JDK 目录: 1.安装sonar插件:SonarQube Scanner for Jenkins 2.安装SonarQube 3.安装sonar-scanner ++++++ ...

  8. webdriervAPI(获取验证信息)

    from  selenium  import  webdriver driver  =  webdriver.Chorme() driver.get("http://www.baidu.co ...

  9. IDEA debug漏洞第二弹(fastjson,version<1.2.47)

    首先这个漏洞调试不需要非要使用docker,本身是一个jar包的问题.所以我们可以自己写一个小java代码来直接调试. POC如下 {"name":{"@type&quo ...

  10. Blynk系列随笔

    Blynk系列随笔 1.基于Blynk服务器搭建物联网测试Demo 2.本地 Blynk服务器搭建