蒟蒻写题解实在不易

前置

方法一:\(Cdq+NTT\)

方法二:多项式求逆

NTT总结多项式求逆总结

方法一

\(Cdq+NTT\):

\[f_i=\sum\limits_{j=1}^i f_{i-j}g_j
\]

乍一看直接\(cdq\),然后发现树状数组类的东西好像做不了:$$[l,mid]\longrightarrow [mid+1,r]:w_x=\sum\limits_{i=l}^{mid(x)} f_i g_{x-i}$$

直接上卷积就行,\(O(nlog^2n)\)

毒瘤的代码时间,由于我们是只把利用到的位置进行\(NTT\),才保证了复杂度

期间多个下标混合利用,细节很多,调了很久,建议先把思路完全理清再写代码

方法二

多项式求逆:

\[g_0=0\therefore \sum\limits_{j=1}^i f_{i-j}g_j=\sum\limits_{j=0}^i f_{i-j}g_j
\]

构造生成函数:\(F(x)\in f,G(x)\in g\)

则:$$F(x)G(x)+1=F(x)\longrightarrow F(x)\equiv \frac{-1}{G(x)-1}(mod~x^n)$$

直接多项式求逆,\(O(nlogn)\)

Code(方法一)

#include<bits/stdc++.h>
typedef long long LL;
const LL mod=998244353,gg=3,maxn=1e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}
return x*f;
}
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=ret*base%mod; base=base*base%mod; b>>=1;
}return ret;
}
LL r[maxn];
inline void NTT(LL *a,LL n,LL type){
for(LL i=0;i<n;++i) if(i<r[i]) std::swap(a[i],a[r[i]]);
for(LL mid=1;mid<n;mid<<=1){
LL wn(Pow(gg,(mod-1)/(mid<<1)));
if(type==-1) wn=Pow(wn,mod-2);
for(LL R=mid<<1,j=0;j<n;j+=R)
for(LL k=0,w=1;k<mid;++k,w=w*wn%mod){
LL x(a[j+k]),y(w*a[j+mid+k]%mod);
a[j+k]=(x+y)%mod; a[j+mid+k]=(x-y+mod)%mod;
}
}
if(type==-1){
LL ty(Pow(n,mod-2));
for(LL i=0;i<n;++i) a[i]=a[i]*ty%mod;
}
}
inline LL Fir(LL n){
LL limit(1),len(0);
while(limit<n){
limit<<=1; ++len;
}
for(LL i=0;i<limit;++i) r[i]=(r[i>>1]>>1)|((i&1)<<len-1);
return limit;
}
LL n;
LL f[maxn],g[maxn],F[maxn],G[maxn],W[maxn];
inline void Solve(LL l,LL r){
if(l==r) return;
LL mid(l+r>>1);
Solve(l,mid);
for(LL i=l,x=0;i<=mid;++i,++x) F[x]=f[i];
for(LL i=1,x=0;i<=r-l;++i,++x) G[x]=g[i]; LL limit(Fir(r-l+mid-l+1));
for(LL i=mid-l+1;i<limit;++i) F[i]=0;
for(LL i=r-l-1+1;i<limit;++i) G[i]=0;
NTT(F,limit,1); NTT(G,limit,1);
for(LL i=0;i<limit;++i) W[i]=F[i]*G[i]%mod;
NTT(W,limit,-1); for(LL i=mid+1,x=mid-l;i<=r;++i,++x) f[i]=(f[i]+W[x])%mod;
Solve(mid+1,r);
}
int main(){
n=Read();
for(LL i=1;i<n;++i) g[i]=Read();
f[0]=1;
Solve(0,n-1);
for(LL i=0;i<n;++i) printf("%lld ",f[i]);
return 0;
}

【模板】分治FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 解题:洛谷4721 [模板]分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...

  3. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  4. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  5. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  6. luoguP4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...

  7. LG4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 $n-1$ 的数组 $g[1],g[2],..,g[n-1]$,求 $f[0],f[1],..,f[n-1]$ ...

  8. P4721【模板】分治 FFT

    瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\S ...

  9. [洛谷P4721]【模板】分治 FFT

    题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:直接求复杂度是$O(n^ ...

  10. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

随机推荐

  1. 使用Docker发布Asp.Net Core程序到Linux

    CentOS安装Docker 按照docker官方文档来,如果有之前安装过旧版,先卸载旧版,没有的话,可跳过. sudo yum remove docker \ docker-client \ doc ...

  2. .Dot NET Cored简介

    一.诞生原因 1..Net平台封闭. 2.不支持跨平台. 3.受限于Windows平台性能,无法解决高性能场景. 二.优势 1.支持跨平台.开源.系统建设成本低. 2.效率和性能较好. 三.缺点 1. ...

  3. hystrix配置

    一.hystrix在生产中的建议 1.保持timeout的默认值(1000ms),除非需要修改(其实通常会修改) 2.保持threadpool的的线程数为10个,除非需要更多 3.依赖标准的报警和监控 ...

  4. iOS 动画基础-显式动画

    摘要 显式动画 属性动画 CABasicAnimation *animation = [CABasicAnimation animation];         [self updateHandsAn ...

  5. you might not need jquery

    What's the oldest version of IE you need to support? IE10 /**json**/ var request = new XMLHttpReques ...

  6. 判断上传文件是否为excel

    1. 可以在input上传组件上添加属性accept,这样上传文件的时候,就只能选择excel文件了. <input type="file" accept="app ...

  7. python3 super().__init__()

    父类不会自动调用__init__方法 class A: def __init__(self): A = 'A' self.a = 'a' print('init A') class B(A): def ...

  8. flutter常见编译运行等奇怪问题的汇总汇(l转)

    1. flutter ios 卡死在闪屏页:解决办法: 1) flutter doctor 2) flutter clean 3) flutter build ios --release 4) Arc ...

  9. (转)使用SDWebImage和YYImage下载高分辨率图,导致内存暴增的解决办法

    http://blog.csdn.net/guojiezhi/article/details/52033796

  10. 从零开始搭建vue移动端项目到上线

    先来看一波效果图 初始化项目 1.在安装了node.js的前提下,使用以下命令 npm install --g vue-cli 2.在将要构建项目的目录下 vue init webpack mypro ...