小象和老鼠 DP
小象和老鼠 DP
\(N*M\)的网格图,格子\((i,j)\)有\(A_{i,j}\)个老鼠,问小象从左上角\((1,1)\)走到右下角\((N,M)\)看到的最少老鼠。小象可以看见老鼠,当且仅当老鼠的位置\((x2,y2)\)满足\(|x1-x2|+|y1-y2|\le1\)。
比较有意思的一道DP题,还是比较简单。我们发现如果直接设\(f[i][j]\)跑会导致一些格子重复计算,所以我们可以设\(f[i][j][0]\)表示到位置\((i,j)\)时最少看到的老鼠数量,并且当前状态是从上面转移而来的,\(f[i][j][1]\)表示到位置\((i,j)\)时最少看到的老鼠数量,并且当前状态是从左面转移而来的,这样我们便可以获得决策所需要的全部条件,从而避免重复计算。
转移方程看着图写就好了
//f[i][j][0]当前状态从上面转移而来
f[i][j][0]=min(f[i-1][j][1]+mp[i][j+1]+mp[i+1][j], f[i][j][0]);
f[i][j][0]=min(f[i-1][j][0]+mp[i+1][j]+mp[i][j-1]+mp[i][j+1], f[i][j][0]);
//f[i][j][0]当前状态从左面转移而来
f[i][j][1]=min(f[i][j-1][1]+mp[i][j+1]+mp[i-1][j]+mp[i+1][j], f[i][j][1]);
f[i][j][1]=min(f[i][j-1][0]+mp[i][j+1]+mp[i+1][j], f[i][j][1]);
完整代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 1010
using namespace std;
int f[MAXN][MAXN][2],mp[MAXN][MAXN];
int n,m;
int calc(int x, int y){
int res=0;
if(x+1>=1&&x+1<=n) res+=mp[x+1][y];
if(x-1>=1&&x-1<=n) res+=mp[x-1][y];
if(y+1>=1&&y+1<=m) res+=mp[x][y+1];
if(y-1>=1&&y-1<=m) res+=mp[x][y-1];
return res+mp[x][y];
}
int main(){
scanf("%d %d", &n, &m);
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
f[i][j][0]=f[i][j][1]=0x3f3f3f3f;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d", &mp[i][j]);
f[1][1][0]=f[1][1][1]=calc(1, 1);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j){
//f[i][j][0]当前状态从上面转移而来
f[i][j][0]=min(f[i-1][j][1]+mp[i][j+1]+mp[i+1][j], f[i][j][0]);
f[i][j][0]=min(f[i-1][j][0]+mp[i+1][j]+mp[i][j-1]+mp[i][j+1], f[i][j][0]);
//f[i][j][0]当前状态从左面转移而来
f[i][j][1]=min(f[i][j-1][1]+mp[i][j+1]+mp[i-1][j]+mp[i+1][j], f[i][j][1]);
f[i][j][1]=min(f[i][j-1][0]+mp[i][j+1]+mp[i+1][j], f[i][j][1]);
}
printf("%d", min(f[n][m][0], f[n][m][1]));
return 0;
}
这是校内模拟赛做的一道题,一开始以为是道DP签到题导致思路都错了,后面静下心慢慢分析决策才想出正解,可见手推样例重要性。另外一定不要轻敌。
小象和老鼠 DP的更多相关文章
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【BZOJ-3174】拯救小矮人 贪心 + DP
3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 686 Solved: 357[Submit][Status ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 洛谷 P3672 小清新签到题 [DP 排列]
传送门 题意:给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列 $n \le 300, k \le 10^13$ 一下子想到hzc讲过的DP 从小到大插入,后插入不会对前插 ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- 洛谷 p1164 小A点菜 【dp(好题)】 || 【DFS】 【恰好完全装满】
题目链接:https://www.luogu.org/problemnew/show/P1164 题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种. u ...
- 洛谷 P1164:小A点菜(DP/DFS)
题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...
- BZOJ 3174 拯救小矮人(贪心+DP)
题意 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚到肩 ...
- [TJOI2013]拯救小矮人[排序+dp]
题意 题目链接 分析 Imagine的完美回答 重点大概是证明我们选出要救的小矮人一定可以根据 \(a_i+b_i\) 的大小进行排序救出. 注意这里关注的对象是可以保留的高度,所以我们的dp值才会表 ...
随机推荐
- h5开发微信公众号重定向到关注页面没有关注按钮 (微信你个坑)
搜索微信公众号是这样的 微信公众号重定向到关注页面没有关注按钮 如何微信公众号重定向到关注页面没有关注按钮,请看上篇笔记 无解,微信一直在封这种通过链接跳转到公众号关注页面的方法.只有放个二维码提示长 ...
- SQLSERVER 根据值查询表名
CREATE PROCEDURE [dbo].[SP_FindValueInDB](@value VARCHAR(1024)) ASBEGIN-- SET NOCOUNT ON added to pr ...
- 详解Ubuntu16.04安装Python3.7及其pip3并切换为默认版本(转)
原文:https://www.jb51.net/article/156927.htm
- 怎样让ssh连接保持连接, 而不会因为没有操作而中断
因为安全方面的考虑, ssh服务默认在一段时间内不操作会断开连接, 解决方法修改ssh的配置文件, 让ssh每隔一段时间就自动进行一次连接, 以达到保持连接的目的. 首先找到ssh配置文件的位置: f ...
- GOF学习笔记1:术语
1.abstract class 抽象类定义了一个接口,把部分或全部实现留给了子类,不能实例化. 2.abstract coupling 抽象耦合如果一个类A引用了另一个抽象类B,那么就说A是抽象耦 ...
- MLP神经网络实例--手写识别
1.导入MNIST数据集 直接使用fetch_mldata会报错,错误信息是python3.7把fetch_mldata方法移除了,所以需要单独下载数据集从这个网站上下载数据集: https://gi ...
- element-ui 表格错行
//表格错行 .el-table th.gutter { display: table-cell !important }
- Vue指令之`v-bind`的三种用法及v-on事件指令
v-bind:是 Vue中,提供的用于绑定属性的指令 1. 直接使用指令`v-bind` 2. 使用简化指令`:` 3. 在绑定的时候,拼接绑定内容:`:title="btnTitle + ...
- Bash基础——printf
简介 printf将参数插入到用户定义的文本字符串中,从而创建格式化的输出.printf将格式化的字符串输出到标准输出.printf命令根源是C语言下面的printf函数,就连名字都一样,很多用法也是 ...
- C++——static & const
静态成员 由关键字static修饰说明的类成员,称为静态类成员(static class member).虽然使用static修饰说明,但与函数中的静态变量有明显差异.类的静态成员为其所有对象共享,不 ...