颜色和样式

八种内建默认颜色缩写
b:blue g:green r:red c:cyan m:magenta y:yellow k:black w:white
其它颜色表示方法可以参照百度给的值
https://baike.baidu.com/item/%E5%8D%81%E5%85%AD%E8%BF%9B%E5%88%B6%E9
%A2%9C%E8%89%B2%E7%A0%81/10894232?fromtitle=%E9%A2%9C%E8%89%B2%E5%8D
%81%E5%85%AD%E8%BF%9B%E5%88%B6&fromid=15455510&fr=aladdin
灰色阴影
html 十六进制
RGB元组
 import numpy as np
import matplotlib.pyplot as plt y=np.arange(1,5)
# plt.plot(y,'--',marker='o',color='g')
# '--',marker='o',color='g',分别表示线型,点型,颜色 # plt.plot(y+1,'-.',marker='D',color='0.5')
# plt.plot(y+2,':',marker='^',color='#FF00FF')
# plt.plot(y+3,'-',marker='p',color=(0.1,0.2,0.3)) # 可以将颜色,点型,线型写成一个字符串
plt.plot(y,'cx--') plt.show()
面向对象 VS Matlab Style

pyplot:经典高层封装,到目前为止,我们所用的都是pyplotpylab:将Matplotlib和NumPy合并的模块,模拟Matlab的编程环境面向对象的方式:Matplotlib的精髓,更基础和底层的方式

pyplot:简单易用。交互使用方便,可以根据命令实时作图。但底层定制能力不足

pylab:完全封装,环境最接近Matlab。不推荐使用

面向对象(Object-Oriented)的方式:接近Matplotlib基础和底层的方式。难度稍大。

但定制能力强而且是Matplotlib的精髓

总结:实战中推荐,根据需求,总和使用pyplot和面向对象的方式,显示导入numpy

常用模块导入代码:

import matplotlib.pyplot as plt

import numpy as np

 import matplotlib.pyplot as plt
import numpy as np x = np.arange(0, 10, 1)
y = np.random.randn(len(x)) fig = plt.figure()
# 面向对象方法,要先建立一个画布 ax = fig.add_subplot(111)
# 相当于将要在画布上建立一个一行一列的图,最后数字1表示要画的图在第一个位置
# ax = fig.add_subplot(221) f1 = plt.plot(x, y) t = ax.set_title('object oriented') # 为图命名 # plt.plot(x, y)
plt.show()

多图

要创建多个画布即应该在代码中每画一个图就需要插入fig=plt.figure()如下代码

 import matplotlib.pyplot as plt
# import numpy as np figl=plt.figure()
ax1=figl.add_subplot(111)
ax1.plot([1,2,3],[3,2,1]) fig2=plt.figure()
ax2=fig2.add_subplot(111)
ax2.plot([1,2,3],[3,2,5]) plt.show()

网格

在画图的时候可以添加背景网格的形式增加图的可读性

 import matplotlib.pyplot as plt
import numpy as np x = np.arange(0,10,1)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(x,x*2) ax.grid(color='g')
# 这是要给所画的图添加网格的代码行 plt.show()

图例

图例是图表中一种很重要的说明方式,在matplotlib中也可以添加图例

 import matplotlib.pyplot as plt
import numpy as np x=np.arange(1,11,1) # 添加图例的第一种方式
# plt.plot(x, x*2, label='Normal')
# plt.plot(x, x*3, label='Fast')
# plt.plot(x, x*4, label='Faster') plt.plot(x, x*2)
plt.plot(x, x*3)
plt.plot(x, x*4)
plt.legend(['Normal','Fast','Faster'])
plt.legend(loc=0) # 图例放置最优位置,官网上有更多的相关解释
plt.legend(ncol=3) # 图例分三列放 plt.show()

坐标轴范围

 import matplotlib.pyplot as plt
import numpy as np x = np.arange(-10,11,1) plt.plot(x,x*x) # plt.axis([-5,5,20,60]) # 前两个数字表示x轴范围,后两个数字表示y轴范围
plt.axis([-10,10,0,100])
# plt.xlim([-5,5]) # 可以只改变x轴范围y轴不变
# plt.ylim([0,60])
# plt.xlim(xmin=-5,xmax=5) # 与plt.xlim([-5,5]) 效果一样
plt.xlim(xmin=-5) # 只改变x轴一端的范围
plt.show()

坐标轴刻度

 import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import datetime
x = np.arange(1,11,1)
plt.plot(x,x)
ax=plt.gca() # 表示获取当前的坐标轴,对坐标轴操作需要添加此行 # ax.locator_params('x',nbins=5)
# 给x轴添加刻度 ax.locator_params('y', nbins=5)
# 给y轴添加刻度 # 下面是x轴的日期刻度标注方法
fig=plt.figure()
start=datetime.datetime(2015,1,1)
stop=datetime.datetime(2016,1,1)
delta=datetime.timedelta(days=1) dates = mpl.dates.drange(start,stop,delta)
y=np.random.rand(len(dates))
ax=plt.gca()
ax.plot_date(dates,y,linestyle='-',marker='') date_format=mpl.dates.DateFormatter('%Y-%m')
ax.xaxis.set_major_formatter(date_format) # xaxis表示在x轴添加日期刻度
fig.autofmt_xdate() # 由于日期的数字过长,所以需要matplotlib自动优化摆放方式 plt.show()

添加坐标轴

 import matplotlib.pyplot as plt
import numpy as np x=np.arange(2,20,1)
y1=x*x
y2=np.log(x) # 这是添加y轴
# plt.plot(x,y1)
# plt.twinx() #创建一个双胞胎x轴
# plt.plot(x,y2,'r') # 这是添加x轴
plt.plot(y1, x)
plt.twiny() #创建一个双胞胎y轴
plt.plot(y2, x, color='r') # 这是用面向对象的方式添加坐标轴
# fig = plt.figure()
# ax1 = fig.add_subplot(111)
# ax1.plot(x,y1)
# ax1.set_ylabel('Y1')
# ax2=ax1.twinx()
# ax2.plot(x,y2,'r')
# ax2.set_ylabel('y2')
# ax1.set_xlabel('Compare Y1 and Y2') plt.show()


matplotlib笔记2的更多相关文章

  1. Python matplotlib笔记

    可视化的工具有很多,如Tableau,各种JS框架,我个人感觉应该是学JS最好,因为JS不需要环境,每个电脑都有浏览器,而像matplotlib需要Python这样的开发环境,还是比较麻烦的,但是毕竟 ...

  2. matplotlib笔记3

    关于matplotlib的绘制图形的基本代码,我们可以参照下面的连接 https://matplotlib.org/gallery/index.html https://matplotlib.org/ ...

  3. matplotlib笔记1

    散点图-scatter 散点图显示两组数据的值,每个点的坐标位置由变量的值决定由一组不连接的点完成,用于观察两种变量的相关 import numpy as np import matplotlib.p ...

  4. matplotlib笔记——legend用法

    rates = [0.01, 0.001, 0.0001] models = {} costs = np.array([[0.7, 0.9, 0.4, 0.6, 0.4, 0.3, 0.2, 0.1] ...

  5. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

  6. Matplotlib:mpl_toolkits.mplot3d工具包

    简介 mpl_toolkits.mplot3d是Matplotlib里面专门用来画三维图的工具包,官方指南请点击此处<mplot3d tutorial> 使用 导入 使用from mpl_ ...

  7. Matplotlib 学习笔记

    注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...

  8. Matplotlib学习笔记(二)

    原  Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .car ...

  9. Matplotlib学习笔记(一)

    原   matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .ca ...

随机推荐

  1. 微信小程序入门与实战 从0到1进行细致讲解 涵盖小程序开发核心技能下载

    第1章 什么是微信小程序? 第2章 小程序环境搭建与开发工具介绍 第3章 从一个简单的“欢迎“页面开始小程序之旅 第4章 第二个页面:新闻阅读列表 第5章 小程序的模板化与模块化 第6章 构建新闻详情 ...

  2. redisson spring boot starter 做分布式锁

    使用redisson做分布式锁 分布式锁 在java中单体应用中,我们如果想要保证一个接口或者服务.方法当下只有一个线程在运行,我们可以通过JDK提供的Lock.Semaphore.同步锁等多种方式实 ...

  3. java四种对象引用类型

    java四种对象引用类型 对象的强.软.弱和虚引用 在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说,只有对象处于可触及(reachable)状态,程序 ...

  4. SpringCloud学习整理

    参考文档 [1]: Spring Cloud Ribbon负载均衡

  5. EXCEL公式中如何表示回车符?

    问题: 将 id credttm cdno cdamt cashbrid cashrole note 转换为 "id  credttm  cdno   cdamt  cashbrid  ca ...

  6. 在phpstorm中如何对比文件呢?

    有两种方法: 在phpstorm中左侧的资源管理器中,按住键盘上的CTRL键,然后鼠标右键,点击菜单中的"Compare Tow Files",就可以了,如下图 在phpstorm ...

  7. OpenJudge计算概论-矩阵交换行

    /*======================================================================== 矩阵交换行 总时间限制: 1000ms 内存限制: ...

  8. 解决Visual Studio:"无法导入以下密钥文件: xxxx.pfx,该密钥文件可能受密码保护"

    [解决方法] 从开始菜单找到并打开Visual Studio 命令提示(2010):开始->Microsoft Visual Studio 2010->Visual Studio Tool ...

  9. ISO/IEC 9899:2011 条款6.2.2——标识符的连接

    6.2.2 标识符的连接 1.在不同作用域中声明的一个标识符或在同一作用域多次出现的一个标识符可以被用作对同一个对象或函数的引用,通过一个称为连接的过程.[注:在两个不同的标识符之间没有连接.]有三种 ...

  10. 【集成模型】Boosting

    0 - 思想 Bagging算法思想是减少预测方差(variance),Boosting算法思想是为了减少预测偏差(bias). Boosting算法思想是将“弱学习算法”提升为“强学习算法”.一般来 ...