BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法
这道题还比较友好~
首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率.
考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $j$ 的概率.
如果 $i$ 不是终止节点,则直接将概率相加即可,否则,只有 $M_{i,i}$ 为 $1,$ 其余为 $0.$
这么做目的:
如果碰到终止节点,那整个过程应该结束,换句话说终止节点不能对其他点有贡献.
如果碰到终止节点,那整个过程应该结束,所以无论再乘几次,终止节点的概率都应当完全保留,故 $M_{i,i}=1.$
#include <bits/stdc++.h>
#define N 103
#define setIO(s) freopen(s".in","r",stdin) , freopen(s".out","w",stdout)
using namespace std;
double perc[N],answer[N];
char str[N];
int tot;
queue<int>q;
struct Node
{
int f,ch[13],tag;
}t[N*10];
struct matrix
{
double a[N][N];
double*operator[](int x) { return a[x]; }
matrix() { memset(a,0,sizeof(a)); }
matrix friend operator*(matrix a,matrix b)
{
matrix c;
int i,j,k;
for(i=0;i<=tot;++i)
for(j=0;j<=tot;++j)
for(k=0;k<=tot;++k)
c[i][j]+=a[i][k]*b[k][j];
return c;
}
}mat;
int main()
{
// setIO("input");
int n,l,m,i,j,k;
scanf("%d%d%d",&n,&l,&m);
for(i=0;i<m;++i)
{
double a,b;
scanf("%lf%lf",&a,&b),perc[i]=1.0*a/b;
}
for(i=1;i<=n;++i)
{
int p=0;
scanf("%s",str+1);
for(j=1;j<=l;++j)
{
if(!t[p].ch[str[j]-'A']) t[p].ch[str[j]-'A']=++tot;
p=t[p].ch[str[j]-'A'];
}
t[p].tag=i;
}
for(i=0;i<m;++i) if(t[0].ch[i]) q.push(t[0].ch[i]);
while(!q.empty())
{
int u=q.front();q.pop();
for(i=0;i<m;++i)
{
int p=t[u].ch[i];
if(!p)
{
t[u].ch[i]=t[t[u].f].ch[i];
continue;
}
t[p].f=t[t[u].f].ch[i];
q.push(p);
}
}
for(i=0;i<=tot;++i)
{
if(t[i].tag) mat[i][i]=1.00;
else for(j=0;j<m;++j) mat[i][t[i].ch[j]]+=perc[j];
}
for(i=1;i<=60;++i) mat=mat*mat;
for(i=0;i<=tot;++i) if(t[i].tag) answer[t[i].tag]=mat[0][i];
for(i=1;i<=n;++i) printf("%.2f\n",answer[i]);
return 0;
}
BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法的更多相关文章
- BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1382 Solved: 498[Submit][Statu ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
- 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法
[BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT 30%的 ...
- BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法
题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- ●BZOJ 1444 [Jsoi2009]有趣的游戏
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1444题解.1: 概率dp,矩阵乘法,快速幂. 对所有串建立AC自动机, 那么如果在trie树 ...
- bzoj 1444: [Jsoi2009]有趣的游戏【AC自动机+dp+高斯消元】
https://blog.sengxian.com/solutions/bzoj-1444 orz 一直是我想错了,建出AC自动机之后,实际上这个定义是设f[i]为经过i节点的 * 期望次数 * ,因 ...
随机推荐
- drf序列化及反序列化
假如把drf看做一个汉堡包,我们之前讲的模块属于汉堡包前面的盖盖(请求模块.渲染模块)和底底(异常模块.解析模块.响应模块),但是真正中间的夹心没有讲,那么今天我就和大家来看一下汉堡包的夹心(序列化及 ...
- Codeforces 1178F2. Long Colorful Strip
传送门 首先涂区间,那么区间最多有 $2n$ 个相邻位置不同的情况,并且连续相同的颜色可以合并起来 那么这样操作完以后,区间长度最多为 $2n$ 发现涂完一段区间以后其他的操作都不能出现一边在区间内而 ...
- work mark
<detection name="tracking" open="1" shape="rect" rect="(608,16 ...
- conda查找安装包的版本以及安装特定版本的包
如下图 想要安装特定版本的torchvision,然后conda search torchvision,能够列出conda云上所有的安装包 然后,安装包的时候,conda install 包名=版本就 ...
- Eclipse配置Maven的本地仓库和阿里云镜像 加速Maven更新
先确定自己电脑是否安装了Maven和安装位置,具体查询方法直接win+R键打开运行窗口,输入cmd打开dos窗口,再输入mvn -v即可查询安装的位置 拿到安装位置 D:\Applications\W ...
- 经典i++和++i问题(附带运算符优先级问题)
转自 https://blog.csdn.net/mustard1020/article/details/79617865 1.i++和++i的区别 (1)i++简单来说就是先用i的值来参加表 ...
- 性能测试分析工具nmon文件分析时报错解决办法
1.使用nmon analyzer V334.xml分析数据时,如果文件过大,可以修改Analyser页签中的INTERVALS的最大值: 2.查找生成的nmon文件中包含的nan,删掉这些数据(需要 ...
- Pythonic定义
Pythonic定义 Python最常用的编码风格还是PEP8,详见:http://jython.cn/dev/peps/pep-0008/ Pythonic确实很难定义,先简单引用下<Pyth ...
- Oracle【增删改&数据的备份】
增删改的SQL语句执行完毕后,不会立马进行数据的写入数据库(这时数据在内存中),需要手动对数据进行提交(commit),如果数据出问题,可以使用回滚.主键:非空唯一的 --在一张表中,某字段值是非空唯 ...
- 【原创】马哥 文本三剑客之awk
命令 awk 全称: man搜索: 简述 基本用法 选项 用法与实验 print 打印 (1)(2)(3) 变量 1.内建变量 FS与OFS RS与ORS NR与FNR NF ARGC与ARGC 2. ...