CF860E Arkady and a Nobody-men

类比LNOI2014 LCA那个题,其实树剖可以过。。。。(用树状数组区间加区间求和更快!)

巧妙的nlogn做法是:

blog~

(其实第二个式子有锅,应当再加上dep[fa[x]])

对于同一层的考虑处理lca问题

一定要排个序处理

dfs是处理树上顺序的有力武器!

按dfs从小到大,一个x的前面的所有点的lca深度单调不降

可以用一个单调栈维护,只用维护:最后的位置(宽度),深度(键值),代表的点

如果和栈顶的代表点的lca深度比栈顶的键值小,那么pop栈顶,等价于把些点合并!

详见代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
}
//using namespace Modulo;
namespace Miracle{
const int N=5e5+;
int n;
int fa[N][];
ll g[N];
struct node{
int nxt,to;
}e[N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
int dfn[N],df;
int dep[N];
vector<int>mem[N];
int mx;
void dfs(int x,int d){
dep[x]=d;
mx=max(mx,d);
mem[d].pb(x);
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
dfs(y,d+);
}
}
struct po{
int id,pos,d;
po(){}
po(int ii,int dd,int pp){
id=ii;pos=pp;d=dd;
}
}sta[N];
int top;
ll calc(){
if(!top) return ;
return (ll)(sta[top].pos-sta[top-].pos)*sta[top].d;
}
int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(reg j=;j>=;--j){
if(dep[fa[x][j]]>=dep[y]) x=fa[x][j];
}
if(x==y) return x;
for(reg j=;j>=;--j){
if(fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
}
return fa[x][];
}
void sol(vector<int>&v){
int o=;
top=;
ll val=;
for(solid x:v){
if(!o){
++top;sta[top]=po(x,,);
}
else{
while(){
int y=lca(sta[top].id,x);
if(dep[y]>=sta[top].d){
++top;sta[top]=po(x,dep[y],o);break;
}
val-=calc();
--top;
}
val+=calc();
g[x]+=val;
}
++o;
}
}
int main(){
rd(n);
int rt=;
for(reg i=;i<=n;++i){
rd(fa[i][]);if(fa[i][]==) rt=i;
else add(fa[i][],i);
}
dfs(rt,);
for(reg j=;j<=;++j){
for(reg i=;i<=n;++i){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
for(reg i=;i<=mx;++i){
for(solid x:mem[i]) g[x]=g[fa[x][]]+i-;
sol(mem[i]);
reverse(mem[i].begin(),mem[i].end());
sol(mem[i]);
}
prt(g,,n);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

LCA和dfs本身着关系,

这里利用的本质上是,两个点的lca就是dfs栈不断回溯后,第一次前进下来的点就是lca(分叉地方)

O(1)LCA也是利用这个性质

CF860E Arkady and a Nobody-men的更多相关文章

  1. cf860E Arkady and A Nobody-men (树剖)

    容易得出,如果我们按照深度一层一层地做,做完一层后,这层某个点的答案就是它的祖先们的子树大小(统计大小时不包括树根) 由于我太菜了不会别的方法,虽然N是5e5的,还是只好用一个树剖(树状数组降常数)水 ...

  2. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  3. 【CF860E】Arkady and a Nobody-men 长链剖分

    [CF860E]Arkady and a Nobody-men 题意:给你一棵n个点的有根树.如果b是a的祖先,定义$r(a,b)$为b的子树中深度小于等于a的深度的点的个数(包括a).定义$z(a) ...

  4. Things about single men that women hate

    Things about single men that women hate为何你俘获不了女神的心?If you listen in to a group of single women talki ...

  5. Men and women can't be 'just friends

    Men and women can't be 'just friends' Can heterosexual men and women ever be "just friends" ...

  6. C. Greedy Arkady

    kk people want to split nn candies between them. Each candy should be given to exactly one of them o ...

  7. 广告狂人第一至七季/全集Mad Men迅雷下载

    广告狂人 第一季 Mad Men Season 1 (2007) 本季看点:你是谁?你想要什么?你爱乾什么?这些都不重要,重要的是你怎么把东西卖出去.凡是了解纽约的人都知道,今天,在麦迪逊大道(Mad ...

  8. 好汉两个半第十二季/全集Two and a Half Men迅雷下载

    本季Two And A Half Men Season 12 (2014)看点:<好汉两个半>的“半个”是因为第一季播出时杰克年纪太小,只能算半个.故事就在这三个主角和他们周围的女人中发生 ...

  9. 好汉两个半第一季/全集Two And A Half Men迅雷下载

    第一季 Two and a Half Men Season 1 (2003)看点:Charlie是一个潇洒自由的单身汉,但正面临离婚危机的兄弟Alan带着儿子Jake的突然来访完全打乱了Charlie ...

随机推荐

  1. 调研task_struct结构体

    进程的描述PCB task_struct——PCB的一种,在linux中描述进程的结构体叫做task_struct. task_struct内容分类: 标识符:描述本进程的唯一标识符,用来区别其他进程 ...

  2. Java通过Socket和动态代理实现简易RPC框架

    本文转自Dubbo作者梁飞大神的CSDN(https://javatar.iteye.com/blog/1123915),代码简洁,五脏俱全. 1.首先实现RpcFramework,实现服务的暴露与引 ...

  3. mysql索引实现原理

    什么是索引: 索引是一种高效获取数据的存储结构,例:hash. 二叉. 红黑. Mysql为什么不用上面三种数据结构而采用B+Tree: 若仅仅是  select * from table where ...

  4. javascript——获取元素方式

    //1:依据id //var element = document.getElementById("test"); console.log(element); //2:依据clas ...

  5. OneinStack – 一键PHP/JAVA安装工具

    https://oneinstack.com/ OneinStack包含以下组合:lnmp(Linux + Nginx+ MySQL+ PHP) lamp(Linux + Apache+ MySQL+ ...

  6. DotNet跨平台 - .net core项目部署到centos7

    环境说明 系统:CentOS Linux release 7.2.1511 (Core) 相关工具:VS2017  xftp 服务器软件:.net core2.0,nginx 准备.net core应 ...

  7. ORM框架之EntityFramework介绍

    ORM框架之EntityFramework介绍 1. 简介 大家好!我是高堂. 作为一位伪前端程序猿,我给大家介绍一下微软的自家的 ORM框架. ADO.NET Entity Framework 以下 ...

  8. oracle查看表空间及大小

    --1.查看表空间的名称及大小 SELECT t.tablespace_name, round(SUM(bytes / (1024 * 1024)), 0) ts_size FROM dba_tabl ...

  9. Windows7用VirtualBox虚拟Ubuntu共享文件夹的终极方式

    在Win7用VirtualBox虚拟机安装Ubuntu后,共享文件夹再也不用手工mount了 安装增强工具包 设置共享文件夹后 VB已经自动挂载Windows文件夹到 /media/sf_*** 目录 ...

  10. django请求周期和请求信息

    Django的请求周期 1,概述 首先我们知道HTTP请求及服务端响应中传输的所有数据都是字符串. 在Django中,当我们访问一个的url时,会通过路由匹配进入相应的html网页. 那么: Djan ...