java应用本地缓存
public class LiveCache<T> {
// 缓存时间
private final int cacheMillis;
// 缓存对象
private final T element;
// 缓存对象创建时间
private final long createTime;
public LiveCache(int cacheMillis, T element) {
this.cacheMillis = cacheMillis;
this.element = element;
this.createTime = System.currentTimeMillis();
}
// 获取缓存对象
public T getElement() {
long currentTime = System.currentTimeMillis();
if(cacheMillis > 0 && currentTime - createTime > cacheMillis) {
return null;
} else {
return element;
}
}
// 获取缓存对象,忽略缓存时间有效性
public T getElementIfNecessary() {
return element;
}
}
public static void main(String[] args) {
int cacheMilis = 1000 ;
LiveCache<Object> liveCache = new LiveCache<>(cacheMilis, new Object()) ;
liveCache.getElement() ;
liveCache.getElementIfNecessary() ;
}
@FunctionalInterface
public interface LiveFetch<T> {
// 刷新缓存接口
T fetch() ;
} public class LiveManager<T> {
// 缓存时间
private int cacheMillis;
// 缓存对象
private LiveCache<T> liveCache;
// 刷新缓存的对象
private LiveFetch<T> liveFetch ; private Logger logger = LoggerFactory.getLogger(LiveManager.class) ; // 刷新缓存开关
private boolean refresh = false ; public LiveManager(int cacheMillis, LiveFetch<T> liveFetch) {
this.cacheMillis = cacheMillis ;
this.liveFetch = liveFetch ;
} /**
* fetch cache ; if cache expired , synchronous fetch
* @return
*/
public T getCache() { initLiveCache(); if(liveCache != null) {
T t ;
if((t= liveCache.getElement()) != null) {
return t ;
} else {
t = liveFetch.fetch() ;
if(t != null) {
liveCache = new LiveCache<T>(cacheMillis, t) ;
return t ;
}
}
} return null ;
} /**
* fetch cache ; if cache expired , return old cache and asynchronous fetch
* @return
*/
public T getCacheIfNecessary() { initLiveCache(); if(liveCache != null) {
T t ;
if((t= liveCache.getElement()) != null) {
return t ;
} else {
refreshCache() ;
return liveCache.getElementIfNecessary() ;
}
} return null ;
} /**
* init liveCache
*/
private void initLiveCache() {
if(liveCache == null) {
T t = liveFetch.fetch() ;
if(t != null) {
liveCache = new LiveCache<T>(cacheMillis, t) ;
}
}
} /**
* asynchronous refresh cache
*/
private void refreshCache() { if(refresh)
return ;
refresh = true ;
try {
Thread thread = new Thread(() -> {
try {
T t = liveFetch.fetch();
if (t != null) {
liveCache = new LiveCache<>(cacheMillis, t);
}
} catch (Exception e){
logger.error("LiveManager.refreshCache thread error.", e);
} finally {
refresh = false ;
}
}) ;
thread.start();
} catch (Exception e) {
logger.error("LiveManager.refreshCache error.", e);
}
}
} public class Test { public static void main(String[] args) {
int cacheMilis = 1000 ;
LiveManager<Object> liveManager = new LiveManager<>(cacheMilis,() -> new Test().t1()) ; liveManager.getCache() ;
liveManager.getCacheIfNecessary() ;
} public Object t1(){ return new Object() ;
}
}
@FunctionalInterface
public interface LiveMapFetch<T> {
// 异步刷新数据
T fetch(String key) ;
} public class LiveMapManager<T> { private int cacheMillis;
private Map<String,LiveCache<T>> liveCacheMap;
private LiveMapFetch<T> liveMapFetch; private Logger logger = LoggerFactory.getLogger(LiveMapManager.class) ; private boolean refresh = false ; public LiveMapManager(int cacheMillis, LiveMapFetch<T> liveMapFetch) {
this.cacheMillis = cacheMillis ;
this.liveMapFetch = liveMapFetch ;
} /**
* fetch cache ; if cache expired , synchronous fetch
* @return
*/
public T getCache(String key) { initLiveCache(); T t ;
if(liveCacheMap.containsKey(key) && (t = liveCacheMap.get(key).getElement()) != null) {
return t ;
} else {
t = liveMapFetch.fetch(key) ;
if(t != null) {
LiveCache<T> liveAccess = new LiveCache<T>(cacheMillis, t) ;
liveCacheMap.put(key, liveAccess) ;
return t ;
}
} return null ;
} /**
* fetch cache ; if cache expired , return old cache and asynchronous fetch
* @return
*/
public T getCacheIfNecessary(String key) { initLiveCache(); T t ;
if(liveCacheMap.containsKey(key) && (t = liveCacheMap.get(key).getElement()) != null) {
return t ;
} else {
if(liveCacheMap.containsKey(key)) {
refreshCache(key) ;
return liveCacheMap.get(key).getElementIfNecessary() ;
} else {
t = liveMapFetch.fetch(key) ;
if(t != null) {
LiveCache<T> liveAccess = new LiveCache<T>(cacheMillis, t) ;
liveCacheMap.put(key, liveAccess) ;
return t ;
}
}
}
return t ;
} /**
* init liveCache
*/
private void initLiveCache() {
if(liveCacheMap == null) {
liveCacheMap = new HashMap<>() ;
}
} /**
* asynchronous refresh cache
*/
private void refreshCache(String key) { if(refresh)
return ;
refresh = true ;
try {
Thread thread = new Thread(() -> {
try {
T t = liveMapFetch.fetch(key);
if (t != null) {
LiveCache<T> liveAccess = new LiveCache<>(cacheMillis, t);
liveCacheMap.put(key, liveAccess);
}
} catch (Exception e) {
logger.error("LiveMapManager.refreshCache thread error.key:",e);
} finally {
refresh = false ;
}
}) ;
thread.start();
} catch (Exception e) {
logger.error("LiveMapManager.refreshCache error.key:" + key, e);
}
} } public class Test { public static void main(String[] args) {
int cacheMilis = 1000 ;
LiveMapManager<Object> liveManager = new LiveMapManager<>(cacheMilis,(String key) -> new Test().t1(key)) ; liveManager.getCache("key") ;
liveManager.getCacheIfNecessary("key") ;
} public Object t1(String key){ return new Object() ;
}
}
java应用本地缓存的更多相关文章
- Java高性能本地缓存框架Caffeine
一.序言 Caffeine是一个进程内部缓存框架,使用了Java 8最新的[StampedLock]乐观锁技术,极大提高缓存并发吞吐量,一个高性能的 Java 缓存库,被称为最快缓存. 二.缓存简介 ...
- Java学习之ConcurrentHashMap实现一个本地缓存
ConcurrentHashMap融合了Hashtable和HashMap二者的优势. Hashtable是做了线程同步,HashMap未考虑同步.所以HashMap在单线程下效率较高,Hashtab ...
- Java本地缓存解决方案其一(使用Google的CacheBuilder)
前不久,业务实现上需要用到本地缓存来解决一些数据量相对较小但是频繁访问的数据,通过查找各种资料,找到了一种可以实现的方案--采用的是Google的CacheBuilder.下面是代码实现过程:1.首先 ...
- Caffeine Cache-高性能Java本地缓存组件
前面刚说到Guava Cache,他的优点是封装了get,put操作:提供线程安全的缓存操作:提供过期策略:提供回收策略:缓存监控.当缓存的数据超过最大值时,使用LRU算法替换.这一篇我们将要谈到一个 ...
- 实现 Java 本地缓存,该从这几点开始
缓存,我相信大家对它一定不陌生,在项目中,缓存肯定是必不可少的.市面上有非常多的缓存工具,比如 Redis.Guava Cache 或者 EHcache.对于这些工具,我想大家肯定都非常熟悉,所以今天 ...
- java中的本地缓存
java中的本地缓存,工作后陆续用到,一直想写,一直无从下手,最近又涉及到这方面的问题了,梳理了一下.自己构造单例.guava.ehcache基本上涵盖了目前的大多数行为了. 为什么要有本地缓存? ...
- 第七章 企业项目开发--本地缓存guava cache
1.在实际项目开发中,会使用到很多缓存技术,而且数据库的设计一般也会依赖于有缓存的情况下设计. 常用的缓存分两种:本地缓存和分布式缓存. 常用的本地缓存是guava cache,本章主要介绍guava ...
- A comparison of local caches (1) 【本地缓存之比较 (1)】
1. Spring local cache [Spring 本地缓存] Spring provided cacheable annotation since 3.1. It's very supe ...
- A comparison of local caches (2) 【本地缓存之比较 (2)】
接上一篇: A comparison of local caches (1) [本地缓存之比较 (1)] This article will compare the asynchronous loca ...
随机推荐
- 【CUDA开发】论CUDA和LAV解码器是否真的实用
先说配置,我电脑E3V3+GTX780TI视频就一个普通的720P AVC1编码MP4视频,实时检测软件是CPU-Z和GPU-Z,AIDA64[全默认设置]全部用ptoplayer默认播放时候,播放3 ...
- 【VS开发】【数据库开发】libevent入门
花了两天的时间在libevent上,想总结下,就以写简单tutorial的方式吧,貌似没有一篇简单的说明,让人马上就能上手用的.首先给出官方文档吧: http://libevent.org ,首页有个 ...
- 【C/C++开发】内存对齐(内存中的数据对齐)、大端模式及小端模式
数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍.DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽.X86 CPU能直接访问对齐的数据,当它试图访问一个未对齐的数据 ...
- Qt 和 Boost关于信号和槽的对比说明
对比 无论是 Qt 的实现方式还是 Boost 的实现方式,除了必须的定义信号和槽的类之外,都不需要额外的类. 两种实现都解决了类爆炸的问题.下面让我们对照着来看一下我们前面的分析. 两个不同的术语以 ...
- Reporting Service 2016 匿名访问配置
环境:SQL SERVER 2016 一.修改配置文件 需要修改的配置文件目录C:\Program Files\Microsoft SQL Server\MSRS13.MSSQLSERVER\Repo ...
- 乐字节Java反射之二:实例化对象、接口与父类、修饰符和属性
大家好,小乐继续接着上集:乐字节Java反射之一:反射概念与获取反射源头Class 这次是之二:实例化对象.接口与父类.修饰符和属性 一:实例化对象 之前我们讲解过创建对象的方式,有new .克隆.反 ...
- C5. Spring 服务的注册与发现(Spring Cloud Eureka)
[概述] Eureka 作为 Spring Cloud 分布式解决方案中重要的一环,实现了服务的注册与发现等功能.Eureka 包括 Eureka Server 和 Eureka Client,具体的 ...
- [MA] 有关 Likelihood
当提到 Linear Regression 或是 Logistic regression 等关键词时,都会涉及一个概念,叫做 Likelihood Function 以及 Maximum Likeli ...
- vim字符匹配
按 : 这个符号进入命令模式后,可以对文本信息进行替换.删除等操作.
- tiny-Spring【1】
Spring框架的两大特性:IOC.AOP 1,IOC特性 IOC:IOC,另外一种说法叫DI(Dependency Injection),即依赖注入.它并不是一种技术实现,而是一种设计思想. 在任何 ...