Stepwise regression 学习笔记
之前在 SPSS 中的回归分析算法中发现,在它里面实现的算法有 Enter 和 Stepwise 两种。Enter 很容易理解,就是将所有选定的自变量一起放入模型中,直接去计算包含所有自变量的整个模型能够解释多少因变量中的变异,以及各个自变量单独的贡献有多少。但对 Stepwise regression 的理解总是很模糊,今天仔细查了一下,做下笔记。
与平时所说的 regression analysis 不太相同,stepwise regression 可以算是一种 feature extraction 的方法。
举个例子,假如我们的数据中有一个因变量,但却有十几或几十个自变量。为了便于对变量数过多的数据进行处理,避免 “curse of dimensionality” 中可能出现的种种问题,我们总是会对数据进行降维,根据在特定领域中的知识或是理论假设,选择其中一些可能更有意义的变量进行后续分析。但不是任何情况下我们都掌握这些先验信息,所以基于数据本身的特征提取方法应运而生。
在 stepwise regression 中,提取哪些变量主要基于的假设是:在线性条件下,哪些变量组合能够解释更多的因变量变异,则将其保留。

具体操作方法有三种:
Forward selection: 首先模型中只有一个单独解释因变量变异最大的自变量,之后尝试将加入另一自变量,看加入后整个模型所能解释的因变量变异是否显著增加(这里需要进行检疫,可以用 F-test, t-test 等等);这一过程反复迭代,直到没有自变量再符合加入模型的条件。Backward elimination: 与 Forward selection 相反,此时,所有变量均放入模型,之后尝试将其中一个自变量从模型中剔除,看整个模型解释因变量的变异是否有显著变化,之后将使解释量减少最少的变量剔除;此过程不断迭代,直到没有自变量符合剔除的条件。Bidirectional elimination: 这种方法相当于将前两种结合起来。可以想象,如果采用第一种方法,每加入一个自变量,可能会使已存在于模型中的变量单独对因变量的解释度减小,当其的作用很小(不显著)时,则可将其从模型中剔除。而第三种方法就做了这么一件事,不是一味的增加变量,而是增加一个后,对整个模型中的所有变量进行检验,剔除作用不显著的变量。最终尽可能得到一个最优的变量组合。
可以想象,这样得到的变量组合,基于当前数据,应该是可以最大程度的解释因变量的变异,但其反面的作用就是会使模型有偏,即所谓的 overfitting 问题;另外,鉴于算法是基于变量解释度来进行特征提取的,当两个变量对因变量的影响相近时,则不免受到较大的噪声影响,使特征提取结果不稳定。
注:上面的描述可能有些偏差或错误,具体内容大家可以移步wiki.
Stepwise regression 学习笔记的更多相关文章
- Logistic Regression学习笔记
1.李航<统计学习方法>: 2.https://blog.csdn.net/laobai1015/article/details/78113214 3.http://www.cnblogs ...
- Sklearn--(SVR)Regression学习笔记
今天介绍一个机器学习包,sklearn.其功能模块有regression\classification\clustering\Dimensionality reduction\data preproc ...
- 学习Logistic Regression的笔记与理解(转)
学习Logistic Regression的笔记与理解 1.首先从结果往前来看下how logistic regression make predictions. 设我们某个测试数据为X(x0,x1, ...
- ufldl学习笔记和编程作业:Softmax Regression(softmax回报)
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...
- [Machine Learning]学习笔记-Logistic Regression
[Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...
- [ML学习笔记] 回归分析(Regression Analysis)
[ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...
- ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learn ...
- ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)
ufldl学习笔记与编程作业:Logistic Regression(逻辑回归) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听 ...
- ufldl学习笔记与编程作业:Linear Regression(线性回归)
ufldl学习笔记与编程作业:Linear Regression(线性回归) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些 ...
随机推荐
- php 常用正则表达 邮箱 手机号啥的
class RegexConst { const REGEX_MOBLIE_86 = '/^1(3|4|5|7|8)\d{9}$/';//中国手机号 const REGEX_MOBLIE_852 = ...
- linux centos7 开启 mysql 3306 端口 外网访问 的实践
第〇步:思路 3306 端口能否被外网访问,主要要考虑: (1)mysql的3306 端口是否开启?是否没有更改端口号? (2)mysql 是否允许3306 被外网访问? (3)linux 是否已经开 ...
- C#实现动态发布IIS站点帮助类
准备工作: 1.引用 System.DirectoryServices 系统程序集 2.引用 Microsoft.Web.Administration 程序集,类库位置在 C:\Windows\Sys ...
- 最新 中钢网java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.中钢网等10家互联网公司的校招Offer,因为某些自身原因最终选择了中钢网.6.7月主要是做系统复习.项目复盘.LeetCo ...
- [转帖]ASP.NET Core 中间件(Middleware)详解
ASP.NET Core 中间件(Middleware)详解 本文为官方文档译文,官方文档现已非机器翻译 https://docs.microsoft.com/zh-cn/aspnet/core/ ...
- fiddler手机抓包1
1.手机抓包配置教程:https://www.jianshu.com/p/724097741bdf 2.
- ftp操作命令
原文:https://www.cnblogs.com/tssc/p/9593614.html 1.登陆ftp服务器 ftp [IP] [PORT] # 登陆ftp服务器,本机登陆可以不写IP实例演示: ...
- 平衡树B树B+树红黑树
二叉树与二叉查找树的操作是必须要熟练掌握的,接下来说的这些树实现起来很困难,所以我们重点去了解他们的特点. 一.平衡二叉查找树与红黑树 平衡树AVL:追求绝对的高度平衡,它具有稳定的logn的高度,因 ...
- 认识 Spring 框架(一)
认识 Spring 框架 Spring 框架是 Java 应用最广的框架,它的成功来源于理念,而不是技术本身,它的理念包括 IoC (Inversion of Control,控制反转) 和 AOP( ...
- 初始STM32
主要内容: 1.什么是STM32 STM32有什么 STM32怎么选型号 一:什么是STM32 ST— 意法半寻体,是一个公司名,即SOC厂商(ARM是IP厂商,STM32中内核由ARM设计,外设例如 ...