luogu题解P2502[HAOI2006]旅行--最小生成树变式
题目链接
https://www.luogu.org/problemnew/show/P2502
分析
一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE
这时我就有个想法就是二分套二分边下标来求得一个比值,同时排序后从小到大枚举每一条边作为最小值,同时再枚举每一条边,如果边权之比小于比值就连起来用并查集维护连通性,可是这个时间复杂度\(O(m^2 log^2m \ \alpha(n))\)过不去QAQ
然后想为什么不直接枚举每条边作为最小值,同时搞一颗以这条边为最小值且联通s,t的最小生成树呢,因为边是排序好的,这样答案是单调的,且正确性是显然的时间复杂度\(O(m^2)\).
代码
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cctype>
#include <cmath>
#define ll long long
#define ri register int
using std::sort;
using std::min;
using std::max;
using std::swap;
template <class T>inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c=='-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;return ;
}
const int maxm=5005;
const int maxn=505;
const int inf=0x7fffffff;
struct Edge{
int x,y,dis;
bool operator <(const Edge &b)const{
return dis<b.dis;
}
}edge[maxm];
int num_edge=0;
int n,m,s,t;
int fa[maxn];
int get(int x){return fa[x]==x?fa[x]:(fa[x]=get(fa[x]));}
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main(){
int x,y,v,xx,yy;
bool flag=0;
read(n),read(m);
for(ri i=1;i<=m;i++){
read(x),read(y),read(v);
edge[i].x=x,edge[i].y=y,edge[i].dis=v;
}
read(s),read(t);
sort(edge+1,edge+1+m);
int mx,cnt=0;
double mi=inf;
int fz,fm;
for(ri i=1;i<=m;i++){
mx=-inf,flag=0;
for(ri j=1;j<=n;j++)fa[j]=j;
for(ri j=i;j<=m;j++){
x=edge[j].x,y=edge[j].y,v=edge[j].dis;
xx=get(x),yy=get(y);
if(xx==yy)continue;
fa[xx]=yy;
mx=max(mx,v);
if(get(s)==get(t)){
flag=1;break;
}//if(cnt==n-1)break;
}
if(i==1&&get(s)!=get(t)){
puts("IMPOSSIBLE");
return 0;
}
else if(flag){
double tmp=(double)mx/edge[i].dis;
//printf("%d %d %lf\n",mx,edge[i].dis,tmp);
if(tmp<mi){
flag=1;
mi=tmp;
fm=edge[i].dis,fz=mx;
}
}
}
int GCD=gcd(fz,fm);
fm=fm/GCD,fz=fz/GCD;
if(fm==1)printf("%d\n",fz);
else printf("%d/%d\n",fz,fm);
return 0;
}
luogu题解P2502[HAOI2006]旅行--最小生成树变式的更多相关文章
- P2502 [HAOI2006]旅行 最小生成树
思路:枚举边集,最小生成树 提交:1次 题解:枚举最长边,添加较小边. #include<cstdio> #include<iostream> #include<algo ...
- P2502 [HAOI2006]旅行
P2502 [HAOI2006]旅行有些问题光靠直觉是不靠谱的,必须有简单的证明,要么就考虑到所有情况.这个题我想的是要么见最小生成树,要么建最大生成树,哎,我sb了一种很简单的情况就能卡掉在最小生成 ...
- P2502 [HAOI2006]旅行——暴力和并查集的完美结合
P2502 [HAOI2006]旅行 一定要看清题目数据范围再决定用什么算法,我只看着是一个蓝题就想到了记录最短路径+最小生成树,但是我被绕进去了: 看到只有5000的边,我们完全可以枚举最小边和最大 ...
- luogu P2502 [HAOI2006]旅行
传送门 边数只有5000,可以考虑\(O(m^2)\)算法,即把所有边按边权升序排序,然后依次枚举每条边\(i\),从这条边开始依次加边,加到起点和终点在一个连通块为止.这个过程可以用并查集维护.那么 ...
- 洛谷P2502[HAOI2006]旅行
题目: Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,-,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也许 ...
- P2502 [HAOI2006]旅行 并查集
题目描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路.也 ...
- luogu题解 P5022 【旅行】
本人的代码可以说洛谷最简单的了 我的存图方式有些与众不同 a[5000][5000]中第一个下标表示第几个点,第二个表示与点相连的点 虽然比前向星废内存但时间极快,大概是O(n)的. 现在步入正题 6 ...
- [HAOI2006]旅行 题解(kruskal)
[HAOI2006]旅行 Description Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,-,N),这些景点被M条道路连接着,所有道路都 ...
- BZOJ 1050 [HAOI2006]旅行comf
1050: [HAOI2006]旅行comf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 976[Submit][Sta ...
随机推荐
- Access denied for user 'root'@'localhost'问题的解决
mysql> grant all privileges on *.* to root@'localhost' identified by '密码'; mysql> flush privil ...
- PyTorch中使用深度学习(CNN和LSTM)的自动图像标题
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...
- 异常值检验实战1--风控贷款年龄变量(附python代码)
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- selenium 等待时间
三种时间模式:1.隐性等待:①等待页面所有元素都加载完才执行下一步,如果在设定的时间内没有加载完成所有元素,则抛出异常②隐式等待对整个driver周期都起作用,即设置一次后,所有执行都会有效from ...
- 数据中心网络架构的问题与演进 — 云网融合与 SD-WAN
目录 文章目录 目录 前文列表 云网融合 云网融合的应用场景 SD-WAN SD-WAN 的应用场景 企业组网互联 SD-EN 数据中心互联 SD-DCI 云间互联 SD-CX 企业用户接入云 数据中 ...
- mysql千万级数据表结构修改
当需要对表进行ddl操作如加索引.增删列时,数据量小时直接在线修改表结构影响不大当表达到百万.千万数据就不能直接在线修改表结构 下面是具体的过程:1.备份数据select * from ih_orde ...
- python中计时模块timeit的使用方法
timeit 模块: timeit 模块定义了接受两个参数的 Timer 类.两个参数都是字符串. 第一个参数是你要计时的语句或者函数. 传递给 Timer 的第二个参数是为第一个参数语句构建环境的导 ...
- Go项目实战:打造高并发日志采集系统(一)
项目结构 本系列文章意在记录如何搭建一个高可用的日志采集系统,实际项目中会有多个日志文件分布在服务器各个文件夹,这些日志记录了不同的功能.随着业务的增多,日志文件也再增多,企业中常常需要实现一个独立的 ...
- const成员变量
#include <iostream> using namespace std; class A { public: A(int size) : SIZE(size) {}; privat ...
- 使用Visual Studio Code Coverage和nunit上传单元测试覆盖率和单元测试结果到SonarQube上
SonarQube.Scanner.MSBuild.exe begin /k:"OMDCCQuotes" /d:sonar.host.url="http://myip:9 ...