一、问题描述

该问题在算法导论中引申自求解两个DNA序列相似度的问题。

可以从很多角度定义两个DNA序列的相似度,其中有一种定义方法就是通过序列对齐的方式来定义其相似度。

给定两个DNA序列A和B,对齐的方式是将空格分别插入到A和B序列中,得到具有相同长度的对齐后的序列C和D;空格可以插入到任意的位置(包括两端),但是相同位置不能同时为空格,也即是不存在C[i]和D[i]同时为空格的情况。然后为对齐后的序列的每个位置打分,总分为每个位置得分之和,具体的打分规则如下:

a、如果C[i] == D[i]且都不是空格,得3分;

b、如果C[i] != D[j]且都不是空格,得1分;

c、如果C[i] 或者D[i]是空格,得0分。

求给定原序列A和B的一个对齐方案,使得该对齐方案的总分最高。

例如,序列原序列A和B如下:

        String strA = "GATC";
String strB = "ATCG";

则其中一个对齐方案如下:

GATC*
*ATCG

该方案总得分score=2*0+3*3 = 9分。

实际上这是最优的对齐方案,在所有的对齐方案中总得分最高为9分。

二、问题分析

为了用更加简单的方式来表示对齐的方案,我们尝试用一些特定的字符记号来表示对齐方案,对此,首先做一个约定,对于打分规则:

1、情况a用“=”字符标记;

2、情况b用“~”字符标记;

3、情况c用“*”字符标记,但是情况c实际上可以细分为两种情况:C[i]为空格时用“+”标记,D[i]为空格时用“-”号标记。这样用“+”和“-”细分的表示相比于统一用“*”来表示,本质的区别在于让对齐方案具有所谓的“方向性”,后面会看到这样的细分对于算法的实现有一定的好处。

有了这样的约定,可以将一个对齐方案用这些字符表示出来,该字符串称之为一个对齐规则字符串R

例如上面的例子中,对齐规则就可以用字符串“-===+”来表示。

可以推断,任何两个原序列的对齐规则字符串R的长度必然满足:

只要能够求得最优对齐方案的对齐规则字符串,就可以计算出最高分数,还可以还原出各自的对齐序列。

考察该问题的最优子结构性质,与最长公共子序列思考的角度比较类似,

用C(i,j)表示序列A[0]...A[i]和序列B[0]...B[j]的最优对齐方案的得分,不难得出其初始条件和递推求解式:

用R(i,j)表示序列A[0]...A[i]和序列B[0]...B[j]的最优对齐方案的对齐规则字符串,结合上面的递推求解式,不难推出对齐规则字符串的运算规则:

三、算法实现

package agdp;
public class Alignment {
//根据对齐骨规则生成相应的对齐后的字符串
private static String[] generate(String base,String ...origin){
int num = origin.length;
String[] align = new String[num];
for (int i = 0; i < num; i++) {
if (origin[i].length() == base.length()) {
align[i] = origin[i];
}else {//base.length()只能是等于或者大于两个原字符串的长度
String tmp = "";
for (int j = 0,k = 0; j < base.length(); j++) {
if (base.charAt(j) == '+') {
if (i == 0) {tmp = tmp+"*";}
else{tmp = tmp+origin[i].charAt(k++);}
}else if(base.charAt(j) == '-'){
if (i == 0) {tmp = tmp+origin[i].charAt(k++);}
else{tmp = tmp+"*";}
}
else {
tmp = tmp+origin[i].charAt(k++);
}
}
align[i] = tmp;
}
}
return align;
}
public static String align(String strA,String strB){
int m = strA.length(),n = strB.length(),tmp;
//aux数组记录子问题的最有对齐方案的分数,也即子问题的最高分数。
int[][] aux = new int[m+1][n+1];
//rule数组记录对齐方案,分别用"+"、"-"、"="和"~"记录四种情况。
String[][] rule = new String[m+1][n+1];
//rule初始化
rule [0][0] = "";
for (int i = 1; i < m+1; i++) {
rule[i][0] = rule[i-1][0]+"-";
}
for (int i = 1; i < n+1; i++) {
rule[0][i] = rule[0][i-1]+"+";
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (strA.charAt(i-1) == strB.charAt(j-1)) {
aux[i][j] = aux[i-1][j-1]+3;
rule[i][j] = rule[i-1][j-1] + "=";//A[i]==B[j]:->"="
}else {
tmp = Math.max(Math.max(aux[i-1][j], aux[i][j-1]), aux[i-1][j-1]+1);
aux[i][j] = tmp;
if (tmp == aux[i-1][j-1]-1) {//A[i]!=B[j]且A[i]和 B[j]不为空字符:->"~"
rule[i][j] = rule[i-1][j-1]+"~";
}else if(tmp == aux[i-1][j]-2){//B[i]为空字符:->"-"
rule[i][j] = rule[i-1][j]+"-";
}else{
rule[i][j] = rule[i][j-1]+"+";//A[i]为空字符:->"+"
}
}
}
}
//格式化输出aux数组
for (int i = 0; i < m+1; i++) {
for (int j = 0; j < n+1; j++) {
System.out.format("%3d",aux[i][j]);
}
System.out.println();
}
//格式化输出rule数组
for (int i = 0; i < m+1; i++) {
for (int j = 0; j < n+1; j++) {
System.out.format("%-15s",rule[i][j]);
}
System.out.println();
}
//返回最优的对齐方法对应的规则
return rule[m][n];
}
//根据规则字符串计算分数
public static int getScore(String ruleStr){
int score = 0;
for (int i = 0; i < ruleStr.length(); i++) {
if (ruleStr.charAt(i) == '=') {
score += 3;
}else if (ruleStr.charAt(i) == '~') {
score += 1;
}
}
return score;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] scoreAry = {3,1,0,0};
// String strA = "GATCGGCAT";
// String strB = "CAATGTGAATC";
String strA = "GATC";
String strB = "ATCG";
// String strA = "GAC";
// String strB = "ATCG";
String ruleStr = align(strA, strB);
System.out.println(ruleStr);
int score = getScore(ruleStr);
System.out.println(score);
String[] alignStr = generate(ruleStr, strA,strB);
for(String str:alignStr){
System.out.println(str);
}
}
}

还是以原始序列“GATC”和“ATCG”为例:

其子问题的得分的计算如下:

子问题的对齐规则字符串的计算如下:

需要特别注意的是,用“+”和“-”号来区分打分情况c后,对齐规则字符串是具有“方向性”的,也就是说对齐规则“-===+”是指从A->B方向的对齐规则。那如果需要B->A的对齐规则,只需要将对齐规则的字符串中+“和”-”相互替换即可。

实际上,从DNA序列对齐问题过渡到编辑距离问题是很比较自然的。本文也有意识的将这两个问题联系在一起,编辑距离问题见下一篇博文。

参考资料:

算法导论.第十五章 习题15-5

转载请注明原文出处:

http://www.cnblogs.com/qcblog/p/7820140.html

DNA序列对齐问题的更多相关文章

  1. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  2. 利用Python【Orange】结合DNA序列进行人种预测

    http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data ...

  3. 华为OJ平台——DNA序列

    题目描述: 一个DNA序列由A/C/G/T四个字母的排列组合组成.G和C的比例(定义为GC-Ratio)是序列中G和C两个字母的总的出现次数除以总的字母数目(也就是序列长度).在基因工程中,这个比例非 ...

  4. 环状DNA序列

    大意: 一个DNA序列是环状的,这意味着有N个碱基的序列有N种表示方法(假设无重复).而这N个序列有一种最小的表示,这个最小表示的意思是这个序列的字典序最小(字典序的意思是在字典中的大小 比如ABC& ...

  5. 简单DNA序列组装(非循环子图)

    生物信息学原理作业第四弹:DNA序列组装(非循环子图) 原理:生物信息学(孙啸) 大致思想: 1. 这个算法理解细节理解比较困难,建议看孙啸的生物信息学相关章节. 2. 算法要求所有序列覆盖整个目标D ...

  6. DNA序列组装(贪婪算法)

    生物信息学原理作业第四弹:DNA序列组装(贪婪算法) 原理:生物信息学(孙啸) 大致思想: 1. 找到权值最大的边: 2. 除去以最大权值边的起始顶点为起始顶点的边: 3. 除去以最大权值边为终点为终 ...

  7. DNA序列局部比对(Smith–Waterman algorithm)

    生物信息原理作业第三弹:DNA序列局部比对,利用Smith–Waterman算法,python3.6代码实现. 实例以及原理均来自https://en.wikipedia.org/wiki/Smith ...

  8. 利用Needleman–Wunsch算法进行DNA序列全局比对

    生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93W ...

  9. HDU 1560 DNA sequence(DNA序列)

    HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K  ...

随机推荐

  1. Prison Break

    Prison Break 时间限制: 1 Sec  内存限制: 128 MB提交: 105  解决: 16[提交][状态][讨论版] 题目描述 Scofild又要策划一次越狱行动,和上次一样,他已经掌 ...

  2. B树、B+树、B*树

    二叉搜索树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如 ...

  3. PE文件格式详解,第二讲,NT头文件格式,以及文件头格式

    PE文件格式详解,第二讲,NT头文件格式,以及文件头格式 作者:IBinary出处:http://www.cnblogs.com/iBinary/版权所有,欢迎保留原文链接进行转载:) PS:本篇博客 ...

  4. 学习札记 ----wind7下如何安装SqlServer数据库

    1.控制面板 ---找到程序和功能选项 如下图所示: 2.打开程序和功能后进入如下图所示的界面,点击打开或关闭window功能. 3.启动window7自带的IIS功能.如下图所示: 4.如上动作准备 ...

  5. MVC调用部分视图PartialView

    using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace Demo2 ...

  6. Echarts数据可视化全解注释

    全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...

  7. 邮件实现详解(四)------JavaMail 发送(带图片和附件)和接收邮件

    好了,进入这个系列教程最主要的步骤了,前面邮件的理论知识我们都了解了,那么这篇博客我们将用代码完成邮件的发送.这在实际项目中应用的非常广泛,比如注册需要发送邮件进行账号激活,再比如OA项目中利用邮件进 ...

  8. mybatis 和hibernate的区别

    mybaits 是不完全的orm(对象关系映射(Object Relational Mapping)框架,需要自己书写sql语句 mybatis学习难度必hibernate低适合关系型模型要求不高的软 ...

  9. 【特效】单选按钮和复选框的美化(只用css)

    表单的默认样式都是比较朴素的,实际页面中往往需要美化他们.这里先说说单选按钮和复选框,有了css3,这个问题就变的好解决了.利用input与label相关联,对label进行美化并使其覆盖掉原本的in ...

  10. 谢欣伦 - 原创教程 - 使用GDI+绘制抗锯齿斜线

    早些年用过GDI的同学都知道,用GDI绘图API函数画斜线那个锯齿有多恶心.就像下图第一行的三条斜线: 坦白说,45度斜线在抗锯齿以前还是蛮抗锯齿的,哈哈,抗不抗都没什么差别. 那第二行很自然就看得出 ...