一、问题描述

该问题在算法导论中引申自求解两个DNA序列相似度的问题。

可以从很多角度定义两个DNA序列的相似度,其中有一种定义方法就是通过序列对齐的方式来定义其相似度。

给定两个DNA序列A和B,对齐的方式是将空格分别插入到A和B序列中,得到具有相同长度的对齐后的序列C和D;空格可以插入到任意的位置(包括两端),但是相同位置不能同时为空格,也即是不存在C[i]和D[i]同时为空格的情况。然后为对齐后的序列的每个位置打分,总分为每个位置得分之和,具体的打分规则如下:

a、如果C[i] == D[i]且都不是空格,得3分;

b、如果C[i] != D[j]且都不是空格,得1分;

c、如果C[i] 或者D[i]是空格,得0分。

求给定原序列A和B的一个对齐方案,使得该对齐方案的总分最高。

例如,序列原序列A和B如下:

        String strA = "GATC";
String strB = "ATCG";

则其中一个对齐方案如下:

GATC*
*ATCG

该方案总得分score=2*0+3*3 = 9分。

实际上这是最优的对齐方案,在所有的对齐方案中总得分最高为9分。

二、问题分析

为了用更加简单的方式来表示对齐的方案,我们尝试用一些特定的字符记号来表示对齐方案,对此,首先做一个约定,对于打分规则:

1、情况a用“=”字符标记;

2、情况b用“~”字符标记;

3、情况c用“*”字符标记,但是情况c实际上可以细分为两种情况:C[i]为空格时用“+”标记,D[i]为空格时用“-”号标记。这样用“+”和“-”细分的表示相比于统一用“*”来表示,本质的区别在于让对齐方案具有所谓的“方向性”,后面会看到这样的细分对于算法的实现有一定的好处。

有了这样的约定,可以将一个对齐方案用这些字符表示出来,该字符串称之为一个对齐规则字符串R

例如上面的例子中,对齐规则就可以用字符串“-===+”来表示。

可以推断,任何两个原序列的对齐规则字符串R的长度必然满足:

只要能够求得最优对齐方案的对齐规则字符串,就可以计算出最高分数,还可以还原出各自的对齐序列。

考察该问题的最优子结构性质,与最长公共子序列思考的角度比较类似,

用C(i,j)表示序列A[0]...A[i]和序列B[0]...B[j]的最优对齐方案的得分,不难得出其初始条件和递推求解式:

用R(i,j)表示序列A[0]...A[i]和序列B[0]...B[j]的最优对齐方案的对齐规则字符串,结合上面的递推求解式,不难推出对齐规则字符串的运算规则:

三、算法实现

package agdp;
public class Alignment {
//根据对齐骨规则生成相应的对齐后的字符串
private static String[] generate(String base,String ...origin){
int num = origin.length;
String[] align = new String[num];
for (int i = 0; i < num; i++) {
if (origin[i].length() == base.length()) {
align[i] = origin[i];
}else {//base.length()只能是等于或者大于两个原字符串的长度
String tmp = "";
for (int j = 0,k = 0; j < base.length(); j++) {
if (base.charAt(j) == '+') {
if (i == 0) {tmp = tmp+"*";}
else{tmp = tmp+origin[i].charAt(k++);}
}else if(base.charAt(j) == '-'){
if (i == 0) {tmp = tmp+origin[i].charAt(k++);}
else{tmp = tmp+"*";}
}
else {
tmp = tmp+origin[i].charAt(k++);
}
}
align[i] = tmp;
}
}
return align;
}
public static String align(String strA,String strB){
int m = strA.length(),n = strB.length(),tmp;
//aux数组记录子问题的最有对齐方案的分数,也即子问题的最高分数。
int[][] aux = new int[m+1][n+1];
//rule数组记录对齐方案,分别用"+"、"-"、"="和"~"记录四种情况。
String[][] rule = new String[m+1][n+1];
//rule初始化
rule [0][0] = "";
for (int i = 1; i < m+1; i++) {
rule[i][0] = rule[i-1][0]+"-";
}
for (int i = 1; i < n+1; i++) {
rule[0][i] = rule[0][i-1]+"+";
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (strA.charAt(i-1) == strB.charAt(j-1)) {
aux[i][j] = aux[i-1][j-1]+3;
rule[i][j] = rule[i-1][j-1] + "=";//A[i]==B[j]:->"="
}else {
tmp = Math.max(Math.max(aux[i-1][j], aux[i][j-1]), aux[i-1][j-1]+1);
aux[i][j] = tmp;
if (tmp == aux[i-1][j-1]-1) {//A[i]!=B[j]且A[i]和 B[j]不为空字符:->"~"
rule[i][j] = rule[i-1][j-1]+"~";
}else if(tmp == aux[i-1][j]-2){//B[i]为空字符:->"-"
rule[i][j] = rule[i-1][j]+"-";
}else{
rule[i][j] = rule[i][j-1]+"+";//A[i]为空字符:->"+"
}
}
}
}
//格式化输出aux数组
for (int i = 0; i < m+1; i++) {
for (int j = 0; j < n+1; j++) {
System.out.format("%3d",aux[i][j]);
}
System.out.println();
}
//格式化输出rule数组
for (int i = 0; i < m+1; i++) {
for (int j = 0; j < n+1; j++) {
System.out.format("%-15s",rule[i][j]);
}
System.out.println();
}
//返回最优的对齐方法对应的规则
return rule[m][n];
}
//根据规则字符串计算分数
public static int getScore(String ruleStr){
int score = 0;
for (int i = 0; i < ruleStr.length(); i++) {
if (ruleStr.charAt(i) == '=') {
score += 3;
}else if (ruleStr.charAt(i) == '~') {
score += 1;
}
}
return score;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] scoreAry = {3,1,0,0};
// String strA = "GATCGGCAT";
// String strB = "CAATGTGAATC";
String strA = "GATC";
String strB = "ATCG";
// String strA = "GAC";
// String strB = "ATCG";
String ruleStr = align(strA, strB);
System.out.println(ruleStr);
int score = getScore(ruleStr);
System.out.println(score);
String[] alignStr = generate(ruleStr, strA,strB);
for(String str:alignStr){
System.out.println(str);
}
}
}

还是以原始序列“GATC”和“ATCG”为例:

其子问题的得分的计算如下:

子问题的对齐规则字符串的计算如下:

需要特别注意的是,用“+”和“-”号来区分打分情况c后,对齐规则字符串是具有“方向性”的,也就是说对齐规则“-===+”是指从A->B方向的对齐规则。那如果需要B->A的对齐规则,只需要将对齐规则的字符串中+“和”-”相互替换即可。

实际上,从DNA序列对齐问题过渡到编辑距离问题是很比较自然的。本文也有意识的将这两个问题联系在一起,编辑距离问题见下一篇博文。

参考资料:

算法导论.第十五章 习题15-5

转载请注明原文出处:

http://www.cnblogs.com/qcblog/p/7820140.html

DNA序列对齐问题的更多相关文章

  1. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  2. 利用Python【Orange】结合DNA序列进行人种预测

    http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data ...

  3. 华为OJ平台——DNA序列

    题目描述: 一个DNA序列由A/C/G/T四个字母的排列组合组成.G和C的比例(定义为GC-Ratio)是序列中G和C两个字母的总的出现次数除以总的字母数目(也就是序列长度).在基因工程中,这个比例非 ...

  4. 环状DNA序列

    大意: 一个DNA序列是环状的,这意味着有N个碱基的序列有N种表示方法(假设无重复).而这N个序列有一种最小的表示,这个最小表示的意思是这个序列的字典序最小(字典序的意思是在字典中的大小 比如ABC& ...

  5. 简单DNA序列组装(非循环子图)

    生物信息学原理作业第四弹:DNA序列组装(非循环子图) 原理:生物信息学(孙啸) 大致思想: 1. 这个算法理解细节理解比较困难,建议看孙啸的生物信息学相关章节. 2. 算法要求所有序列覆盖整个目标D ...

  6. DNA序列组装(贪婪算法)

    生物信息学原理作业第四弹:DNA序列组装(贪婪算法) 原理:生物信息学(孙啸) 大致思想: 1. 找到权值最大的边: 2. 除去以最大权值边的起始顶点为起始顶点的边: 3. 除去以最大权值边为终点为终 ...

  7. DNA序列局部比对(Smith–Waterman algorithm)

    生物信息原理作业第三弹:DNA序列局部比对,利用Smith–Waterman算法,python3.6代码实现. 实例以及原理均来自https://en.wikipedia.org/wiki/Smith ...

  8. 利用Needleman–Wunsch算法进行DNA序列全局比对

    生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93W ...

  9. HDU 1560 DNA sequence(DNA序列)

    HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K  ...

随机推荐

  1. Beautiful Dream hdu3418 (直接做或二分)

    Beautiful Dream Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. 【NOIP2016提高组day2】蚯蚓

    那么我们开三个不上升队列, 第一个记录原来的蚯蚓, 第二个记录乘以p的蚯蚓 第三个记录乘以(1-p)的蚯蚓, 在记录每条就要入队列的时间,就可以求出增加的长度 每次比较三个队列的队首,取最大的值x的切 ...

  3. hdu3974 找上属的模拟

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  4. OpenVPN client端配置文件详细说明(转)

    本文将介绍如何配置OpenVPN客户端的配置文件.在Windows系统中,该配置文件一般叫做client.ovpn:在Linux/BSD系统中,该配置文件一般叫做client.conf.虽然配置文件名 ...

  5. Django进阶篇【1】

    注:本篇是Django进阶篇章,适合人群:有Django基础,关于Django基础篇,将在下一章节中补充! 首先我们一起了解下Django整个请求生命周期: Django 请求流程,生命周期: 路由部 ...

  6. VBA.NET 系统可行性分析模板

    系统可行性分析 1.  技术可行性分析 前提: 系统不知在Window系统中,开发环境不受限制:系统以C/S结构为主,提供大量的数据操作:主要用VB.NET开发,提高安全性和访问效率. 基本要求 客户 ...

  7. C#获取本周第一天和最后一天

    DateTime nowTime = DateTime.Now; #region 获取本周第一天 //星期一为第一天 int weeknow = Convert.ToInt32(nowTime.Day ...

  8. Oracle RAC + ASM + Grid安装

    (一)环境准备 主机操作系统 windows10 虚拟机平台 vmware workstation 12 虚拟机操作系统 redhat 5.5 x86(32位) :Linux.5.5.for.x86. ...

  9. 微信公众号第三方 推送component_verify_ticket协议

    整了一天,终于弄明白了 component_verify_ticket 怎么获取的了.在此先批一下微信公众号平台,文档又没写清楚,又没有客服,想搞哪样哈! 好,回归正题. 第一,先通过开发者资质认证, ...

  10. Java 内存模型- Java Memory Model

    多线程越来越多的使用,使得我们需要对它的深入理解.那么就涉及到了Java内存模型JMM.JMM是JVM的一部分,JMM定义了一个线程修改了一个共享变量,其他线程什么时候或者如何看到这个变量,如何去访问 ...