在块分配机制中,涉及到几个主要的数据结构。

通过ext4_allocation_request描述块请求,然后基于块查找结果即上层需求来决定是否执行块分配操作。

在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex。

在搜寻可用空间过程中,是有可能使用预分配空间的,因此还需要有能够描述预分配空间大小等属性的描述符ext4_prealloc_space。

 

下面,对各个关键结构体进行详细的分析。

1. 块请求描述符ext4_allocation_request

块分配请求属性,有请求描述符ext4_allocation_request来描述:

structext4_allocation_request {

/* target inode for block we'reallocating */

struct inode *inode;

/* how many blocks we want to allocate*/

unsigned int len;

/* logical block in target inode */

ext4_lblk_t logical;

/* the closest logical allocated blockto the left */

ext4_lblk_t lleft;

/* the closest logical allocated blockto the right */

ext4_lblk_t lright;

/* phys. target (a hint) */

ext4_fsblk_t goal;

/* phys. block for the closest logicalallocated block to the left */

ext4_fsblk_t pleft;

/* phys. block for the closest logicalallocated block to the right */

ext4_fsblk_t pright;

/* flags. see above EXT4_MB_HINT_* */

unsigned int flags;

};

这个请求描述符结构体在ext4_ext_map_blocks()中初始化(注:ext4_ext_map_blocks()的作用是查找或分配指定的block块,并完成与缓存空间的映射)。

具体上述信息也就一个成员变量goal值的我们分析一下,goal记录是物理块号,其隐含含义比较重要:goal虽然只是记录物理块号,但是这个物理块号的选择可以很大程度的是文件保证locality特性及其物理地址连续性。

goal是由函数ext4_ext_find_goal()来定义:

static ext4_fsblk_t ext4_ext_find_goal(struct inode*inode,

struct ext4_ext_path *path,

ext4_lblk_t block)

{

if(path) {

intdepth = path->p_depth;

structext4_extent *ex;

/*

* Try to predict block placement assuming thatwe are

* filling in a file which will eventually be

* non-sparse --- i.e., in the case of libbfdwriting

* an ELF object sections out-of-order but in away

* the eventually results in a contiguousobject or

* executable file, or some database extendinga table

* space file. However, this is actually somewhat

* non-ideal if we are writing a sparse filesuch as

* qemu or KVM writing a raw image file that isgoing

* to stay fairly sparse, since it will end up

* fragmenting the file system's free space. Maybe we

* should have some hueristics or some way toallow

* userspace to pass a hint to file system,

* especially if the latter case turns out tobe

* common.

*/

ex= path[depth].p_ext;

if(ex) {

ext4_fsblk_text_pblk = ext4_ext_pblock(ex);

ext4_lblk_text_block = le32_to_cpu(ex->ee_block);

if(block > ext_block)

returnext_pblk + (block - ext_block);

else

returnext_pblk - (ext_block - block);

}

/*it looks like index is empty;

* try to find starting block from index itself*/

if(path[depth].p_bh)

returnpath[depth].p_bh->b_blocknr;

}

/*OK. use inode's group */

returnext4_inode_to_goal_block(inode);

}

细细分析这段代码,如果从根目录到指定逻辑块的path存在,那么就需要根据path来计算目标物理块的地址。

(1) Path的终点若是dataextent,则说明该path是从根到叶子的。当请求block号大于path叶子extent的起始逻辑块号ext_block
(对应物理块号为pblk),其逻辑块的距离为(block-ext_block),为在最可能上保证对应物理地址的连续性;只需返回与pblk+(block-ext_block)物理块号最接近的空闲物理块即可;而对于请求block号小于extent的起始逻辑块号ext_block的情况,只需尽最可能以pblk-(
ext_block -block)物理块号为目标寻找与其物理地址最接近的空闲物理块即可。因此,我们指定goal分别为pblk+(block-ext_block)和pblk-(block-ext_block)

(2)而如果path存在,却没有叶子,那则么办,很简单,我们只需要将goal物理块号指定为最后一个的extent
block对应的物理块号
既可。

(3)还有一种情况,没有给出path。个人认为,这种场景即inode刚create的情况。有专门的ext4_inode_to_goal_block()来实现:

ext4_fsblk_t ext4_inode_to_goal_block(struct inode*inode)

{

structext4_inode_info *ei = EXT4_I(inode);

ext4_group_tblock_group;

ext4_grpblk_tcolour;

intflex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));

ext4_fsblk_tbg_start;

ext4_fsblk_tlast_block;

block_group= ei->i_block_group;

if(flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {

/*

* If there are at leastEXT4_FLEX_SIZE_DIR_ALLOC_SCHEME

* block groups per flexgroup, reserve thefirst block

* group for directories and special files. Regular

* files will start at the second blockgroup. This

* tends to speed up directory access andimproves

* fsck times.

*/

block_group&= ~(flex_size-1);

if(S_ISREG(inode->i_mode))

block_group++;

}

bg_start= ext4_group_first_block_no(inode->i_sb, block_group);

last_block= ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

/*

* If we are doing delayed allocation, we don'tneed take

* colour into account.

*/

if(test_opt(inode->i_sb, DELALLOC))

returnbg_start;

if(bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)

colour= (current->pid % 16) *

(EXT4_BLOCKS_PER_GROUP(inode->i_sb)/ 16);

else

colour= (current->pid % 16) * ((last_block - bg_start) / 16);

returnbg_start + colour;

}

其思想是:如果flex_size至少有EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME个block groups,则定义inode所在flex_group的第二个block
group的首个可用block为起始物理块号bg_block。

当然,如果该flex_group的所有文件都以bg_block为goal的,肯定会产生竞争,所以增加color的作用,目的就是加入一个随机值,降低可能带来的竞争。

因此,最后这种情况的goal会选择inode所在flex_group中某个随机值。

【说明:如果flex_size只有不小于EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME,则才有可能将flex_group中第一个group分离出来,用于专门存放directories和一些特殊文件,普通文件从第二个group中分配,该特可以加速directory的访问及fsck效率。】

2. 分配行为描述符ext4_allocation_contex

在分配过程中,为了更好执行分配,记录一些信息,需要对分配行为进行描述,就有结构体ext4_allocation_contex:

struct ext4_allocation_context{

struct inode *ac_inode;

struct super_block *ac_sb;

/* original request */

struct ext4_free_extent ac_o_ex;

/* goal request (normalized ac_o_ex) */

struct ext4_free_extent ac_g_ex;

/* the best found extent */

struct ext4_free_extent ac_b_ex;

/* copy of the best found extent takenbefore preallocation efforts */

struct ext4_free_extent ac_f_ex;

__u16 ac_groups_scanned;

__u16 ac_found;

__u16 ac_tail;

__u16 ac_buddy;

__u16 ac_flags;                  /* allocation hints */

__u8 ac_status;

__u8 ac_criteria;

__u8 ac_2order;                 /* if request is to allocate 2^N blocks and

* N > 0, the field stores N, otherwise 0 */

__u8 ac_op;               /* operation, for history only */

struct page *ac_bitmap_page;

struct page *ac_buddy_page;

struct ext4_prealloc_space *ac_pa;

struct ext4_locality_group *ac_lg;

};

这个数据结构用来描述分配上下文的属性。基于结构体ext4_allocation_request,由函数ext4_mb_initialize_context()进行初始化。

ext4_mb_initialize_context()主要工作:利用请求描述符的信息初始化ac->ac_o_ex:申请的逻辑块号fe_logical、goal所在的group,goal的cluster号(暂时理解为物理块号);然后将ac_g_ex赋值为ac_o_ex。

ext4_mb_normalize_request()会对ext4_allocation_contex结构体进行normalization:

1.计算file的大小size应该是i_size_read(ac->ac_inode)和(offset+请求长度)中的大值,其中offset是有指定block转化而来。

2.根据已定的算法估算文件可能的大小;

#define NRL_CHECK_SIZE(req, size, max, chunk_size)  \

(req<= (size) || max <= (chunk_size))

/*first, try to predict filesize */

/*XXX: should this table be tunable? */

start_off= 0;

if(size <= 16 * 1024) {

size= 16 * 1024;

}else if (size <= 32 * 1024) {

size= 32 * 1024;

}else if (size <= 64 * 1024) {

size= 64 * 1024;

}else if (size <= 128 * 1024) {

size= 128 * 1024;

}else if (size <= 256 * 1024) {

size= 256 * 1024;

}else if (size <= 512 * 1024) {

size= 512 * 1024;

}else if (size <= 1024 * 1024) {

size= 1024 * 1024;

}else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(21- bsbits)) << 21;

size= 2 * 1024 * 1024;

}else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(22- bsbits)) << 22;

size= 4 * 1024 * 1024;

}else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,

(8<<20)>>bsbits,max, 8 * 1024)) {

start_off= ((loff_t)ac->ac_o_ex.fe_logical >>

(23- bsbits)) << 23;

size= 8 * 1024 * 1024;

}else {

start_off= (loff_t)ac->ac_o_ex.fe_logical << bsbits;

size  =ac->ac_o_ex.fe_len << bsbits;

}

size= size >> bsbits;

start= start_off >> bsbits;

由此可见,预估文件大小之后得到的size和start肯定比原来的要大一些。

3. check一下,是否覆盖了已有的prealloc空间。(如果覆盖,那就BUG);

4.更新ac_g_ex:根据(2)中size和start更新ac_g_ex;

ac->ac_g_ex.fe_logical= start;

ac->ac_g_ex.fe_len= EXT4_NUM_B2C(sbi, size);

由上可见,通过ext4_mb_normalize_request()函数主要更新了ac->ac_g_ex成员。

而ac->ac_b_ex是在ext4_mb_regular_allocator()函数初始化的,其表示可以分配的最佳的extent;隐含意思,就是就按这么分配。

而ac->ac_f_ex是在prealloc空间初始化之前保留ac_b_ex的副本,在ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中定义。

3. 预分配空间描述符ext4_allocation_contex

描述预分配空间大小等属性的描述符ext4_prealloc_space:

structext4_prealloc_space {

struct list_headpa_inode_list;

struct list_headpa_group_list;

union {

struct list_head pa_tmp_list;

struct rcu_headpa_rcu;

} u;

spinlock_t         pa_lock;

atomic_t            pa_count;

unsigned          pa_deleted;

ext4_fsblk_t               pa_pstart;/*phys. block */

ext4_lblk_t                 pa_lstart; /*log. block */

ext4_grpblk_t            pa_len;              /*len of preallocated chunk */

ext4_grpblk_t            pa_free;   /* howmany blocks are free */

unsigned short         pa_type;  /* pa type.inode or group */

spinlock_t         *pa_obj_lock;

struct inode               *pa_inode;       /*hack, for history only */

};

其中有四个结构体非常重要:

pa_lstart -> prealloc空间的起始逻辑地址(对文件而言);

pa_pstart -> prealloc空间的起始物理地址;

pa_len   -> prealloc空间的长度;

pa_free  -> prealloc空间的可用长度;

这个结构体是在函数ext4_mb_new_inode_pa()或ext4_mb_new_group_pa()中初始化。

暂时就分析这么几个结构体吧。

作者:Younger Liu,

本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可。

[ext4]空间管理 - 与分配相关的关键数据结构的更多相关文章

  1. [ext4]13 空间管理 - Prealloc分配机制

     作者:Younger Liu, 本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 未本地化版本许可协议进行许可. 在ext4系统中,对于小文件和大文件的空间申请请求,都有不同的分配策略 ...

  2. [ext4]空间管理 - 分配机制

     在Ext4系统中,存在很多分配策略,比如预分配.多块分配.延迟分配等   Prealloc预分配 在ext4系统中,对于小文件和大文件的空间申请请求,都有不同的分配策略.对用小文件的空间请求,e ...

  3. [ext4]空间管理 - 查找块

     在文件系统中,当需要执行写操作时,肯定是需要查找需要写入的块.那么如何查找块哪? 在Ext4系统中,有两个函数是可能执行查找操作的:ext4_getblk().ext4_get_block(). ...

  4. ORACLE表空间管理维护

    1:表空间概念 在ORACLE数据库中,所有数据从逻辑结构上看都是存放在表空间当中,当然表空间下还有段.区.块等逻辑结构.从物理结构上看是放在数据文件中.一个表空间可由多个数据文件组成. 如下图所示, ...

  5. Oracle表空间管理

    oracle表空间相关常用命令小结: 1.ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;              //修改表空间数据文件类型 2.ALT ...

  6. 本地管理表空间(LMT)与自动段空间管理(ASSM)概念

    创建表空间时,extent management local 定义本地管理表空间(LMT),segment space management auto 定义自动段空间管理(ASSM). extent ...

  7. Oracle数据库体系结构(7) 表空间管理1

    表空间是Oracle数据库最大的逻辑存储结构,有一系列段构成.Oracle数据库对象存储结构的管理主要是通过表空间的管理实现的. 1.表空间的分类 表空间根据存储类型不同分为系统表空间和非系统表空间 ...

  8. ORACLE 临时表空间管理

     临时表空间和临时段 临时表空间用于存放排序.临时表等数据,其信息不需要REDO,因此临时表的DML操作往往比普通表产生的REDO少很多.临时表数据变化不产生REDO,UNDO数据变化产生REDO.临 ...

  9. Jenkins遇到问题二:Jenkins服务器磁盘空间管理策略

    Jenkins在帮助我们自动化构建服务的同时也在消耗服务器的磁盘空间,试想如果构建的项目个数很多,而Jenkins 服务器磁盘空间又不是非常大的话,每隔一段时间磁盘空间就会爆满导致Jenkins出现磁 ...

随机推荐

  1. 升级后 VTE 类虚拟终端不工作

    故障现象 运行 vte 终端,如 gnome terminal.sakura 等光标不出来.xterm 可以运行. 在 xterm 终端中运行 gnome terminal 出现一下错误: grant ...

  2. SEO-站内优化规范

    类别 要求 实际工作要求 程 序 设 计 1.DIV+CSS布局 2.站内导航连接性良好 面包屑导航,翻页方式使用样式二,文章和产品上一页和下一页 3.图片的ALT属性 在编程时注意写 4.超级链接的 ...

  3. Redis Sentinel中的机制与原理详解

    序言 Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案.实际上这意味着你可以使用Sentinel模式创建一个可以不用人为干预而应对各种故障的Redis部署. 它的主要功能有以 ...

  4. CCS内存数据转成图片

    在嵌入式DSP图像处理开发过程中,经常需要将DSP内存中的图像数据保存下来,作为数据集.CCS5.4或者CCS3.3都只支持保存内存原始数据而不支持将内存数据直接存储为一张图片,为了能将CCS保存的. ...

  5. PHP随机生成随机个数的字母组合示例

    在很多系统环境下大家都会用到字母组合各种编码,下面推荐大家非常实用的PHP代码. $num由几个字母组合. $s字母包含大小写,可以自己调配大写还小写. <?php function makec ...

  6. Android开发遇到短信备份失败

    今天做了一个有关ContentProvider的短信备份的小案例,遇到短信备份失败,费了一番周折后终于找到了问题所在 该案例是将短信写到一个xml文件然后保存在手机存储中实现短信的备份功能,关键实现代 ...

  7. .net Core 1.0.1 下的Web框架的的搭建过程step by step

    环境:ubuntu+VScode  数据库:mysql ,ORM框架:chloe 官网 看完本篇文章你能学会 在Vscode下创建项目,一些基础的命令 ,以及得到一个配置文件的简单读取实例 1,在VS ...

  8. python学习之路-书籍推荐

    学python有一段时间了,总结走来的路,发现还是看书靠谱,当然也要多实践. 一.入门篇 1.简明 Python 教程(A Byte of python) http://www.kuqin.com/a ...

  9. javascript中replace使用总结

    ECMAScript提供了replace()方法.这个方法接收两个参数,第一个参数可以是一个RegExp对象或者一个字符串,第二个参数可以是一个字符串或者一个函数.现在我们来详细讲解可能出现的几种情况 ...

  10. 数据库dbutils

    common-dbutils.jarQueryRunnerupdate方法:* int update(String sql, Object... params) -->  可执行增.删.改语句* ...