bzoj 2337: [HNOI2011]XOR和路径
Description

Input
Output
Sample Input
Sample Output
HINT
Source
终于把这个史前遗留的坑给填了。。。
首先异或的话由位无关性,可以按位处理。。。
那么对于每一位,设f[i]表示从i出发第一次到达n且xor和为1的概率,out[i]为i的出边,那么转移就比较容易了。。。
if(w(i,j)&xxx) f[i]+=(1-f[j)/out[i];// 这条边该位为1,需要xor上0,xor和才为1
else f[i]+=f[j]/out[i];//同上。。。
但是这个有环,而且可以走重边自环,肯定是不能dp的,
但是我们发现对于每个f[i]=f[j]/out[i]+(1-f[j']/out[i])...都是一个线性方程。。。所以这是一个线性方程组。。。
然后我们由已知f[n]=1,所以可以用高斯消元解决。。。很妙啊。。。
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=150;
const int M=200050;
int out[N];
int head[M],nxt[M],to[M],cnt,w[M],n,m;
double a[N][N],ans;
void gauss() {
for(int i=1;i<=n;i++) {
int t=i;
while(!a[t][i]) t++;
if(i!=t) swap(a[t],a[i]);
double k=a[i][i];
for(int j=i;j<=n+1;j++) a[i][j]/=k;
for(int j=1;j<=n;j++)
if(j!=i&&a[j][i]) {
k=a[j][i];
for(int p=i;p<=n+1;p++) a[j][p]-=k*a[i][p];
}
}
}
void lnk(int x,int y,int z){
to[++cnt]=y,nxt[cnt]=head[x],w[cnt]=z,head[x]=cnt;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v,val;scanf("%d%d%d",&u,&v,&val);
lnk(u,v,val);out[u]++;
if(u!=v) out[v]++,lnk(v,u,val);
}
int gg;
for(int k=0;k<=30;k++){
if(k==0) gg=1;else gg=gg<<1;
memset(a,0,sizeof(a));
for(int i=1;i<n;i++){
a[i][i]=-1.0;
for(int j=head[i];j;j=nxt[j]){
int y=to[j];
if(w[j]&gg){
a[i][y]-=1.0/out[i],a[i][n+1]-=1.0/out[i];
}
else a[i][y]+=1.0/out[i];
}
}
a[n][n]=-1.0;gauss();ans+=a[1][n+1]*gg;
}
printf("%.3f\n",ans);
return 0;
}
bzoj 2337: [HNOI2011]XOR和路径的更多相关文章
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- ●BZOJ 2337 [HNOI2011]XOR和路径
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...
- bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】
首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...
- BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP
首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- 2337:[HNOI2011]XOR和路径 - BZOJ
昨天才做了一道高斯消元,一下要精度判断,一下又不要精度判断 主要是思路很重要 很容易想到每一个二进制位算一个概率,然后求和,设f[i]为走到从i走到n这一个二进制位为1的概率 f[i]:=∑{f[j] ...
随机推荐
- You may rarely look at it. But you'll always feel it
You may rarely look at it. But you'll always feel it
- Eclipse创建一个JAVA WEB项目
继上一篇博客,Eclipse的Tomcat已经配置好了,现在我们开始创建web项目. 1.打开Eclipse,选择菜单栏的file>New>Dynamic Web Project 弹出窗口 ...
- 免费人脸识别APi
今天对应一些免费的人脸识别的api 做了一下简单的对比,觉得百度开发出来的人脸识别接口还是最符合的我的要求,简单易用,容易上手. 据说百度的一些门禁也使用上了人脸识别的功能了,功能很强大,而且能识别出 ...
- php获取当前月与上个月月初及月末时间戳的方法
php 获取今日.昨日.上周.本月的起始时间戳和结束时间戳的方法,主要使用到了 php 的时间函数 mktime.下面首先还是直奔主题以示例说明如何使用 mktime 获取今日.昨日.上周.本月的起始 ...
- yii2.0中Rbac 怎么添加超加管理员
最笨的是定义常量.具体怎么做?看下面: //定义在控制器声明上面define('BEST_PHPER',serialize(array('admin','admin1')));//设置admin管理员 ...
- 来个Button看一看
0.目录 1.前言 2.基本属性与方法 3.点点更健康 4.我的Button有点多 5.震惊!TextView竟然... 1.前言 每次写代码总会忘记一些东西,又要重新Goooooooooogle,好 ...
- postgres 9.5 FDW变化
9.5主要是2个方法有变动: create_foreignscan_path extern ForeignPath *create_foreignscan_path(PlannerInfo *root ...
- 小白的Python之路 day1 变量
Python之路,Day1 - Python基础1 变量 变量用于存储在计算机程序中引用和操作的信息.它们还提供了一种用描述性名称标记数据的方法,这样我们的程序就能更清晰地被读者和我们自己理解.将变量 ...
- Server SQL 2008 习题
[序言:学期末了,整理了自己这个学期学习数据库做的练习题,也是让自己复习了一遍.有错误的话希望大佬能够批评指正,不胜感激] 一.修改数据库 (1)给db_temp数据库添加一个数据文件文件db_tem ...
- 【liferay】1、使用alloy-UI发送ajax请求
1.首先liferay要发送ajax请求,那么就需要在jsp中定义resourceURL <portlet:resourceURL var="workDeal" id=&qu ...