Counter是对字典类型的补充,用于追踪值的出现次数。

ps:具备字典的所有功能 + 自己的功能

c = Counter('abcdeabcdabcaba')

print c

输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

########################################################################
### Counter
######################################################################## class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a'
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter
>>> c
Counter() Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)] '''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
super(Counter, self).__init__()
self.update(iterable, **kwds) def __missing__(self, key):
""" 对于不存在的元素,返回计数器为0 """
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0 def most_common(self, n=None):
""" 数量大于等n的所有元素和计数器 """
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self):
""" 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds):
""" 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds) def subtract(self, iterable=None, **kwds):
""" 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds) def copy(self):
""" 拷贝 """
'Return a shallow copy.'
return self.__class__(self) def __reduce__(self):
""" 返回一个元组(类型,元组) """
return self.__class__, (dict(self),) def __delitem__(self, elem):
""" 删除元素 """
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem) def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter() def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result Counter

python 之 计数器(counter)的更多相关文章

  1. 计数器(counter),有序字典(OrderDict),默认字典(defaultdict),可命名元祖(namedtuple),双向队列(deque),单项队列(deuqe.Queue)

    Python_Day_05 计数器(counter),有序字典(OrderDict),默认字典(defaultdict),可命名元祖(namedtuple),双向队列(deque),单项队列(deuq ...

  2. JMeter 配置元件之计数器Counter

    配置元件之计数器Counter   by:授客 QQ:1033553122 测试环境 apache-jmeter-2.13 1.   计数器简介 允许用户创建一个在线程组范围之内都可以被引用的计数器. ...

  3. 028_MapReduce中的计数器Counter的使用

    一.分析运行wordcount程序屏幕上打印信息 ##运行wordcount单词频率统计程序,基于输出输出路径. [hadoop@hadoop-master hadoop-1.2.1]$ hadoop ...

  4. CSS计数器:counter

    最近的需求,明星字体销售排行榜中,需要对字体的销售情况进行排序. 在早期,只有ol和ul可以对子元素li进行排序:如果不使用这两个标签,就由前台开发去手动填写序号. 当然,在这个需求中,数据不是实时更 ...

  5. python 计数器Counter

    from collections import Counter colours=( ('Yasoob','Yellow',1), ('Ali','Blue',2), ('Arham','Green', ...

  6. Python_Day_05 计数器(counter),有序字典(OrderDict),默认字典(defaultdict),可命名元祖(namedtuple),双向队列(deque),单项队列(deuqe.Queue)

    Counter(计数器) 是一个字典的子类,存储形式同样为字典,其中存储的键为字典的元素,值为元素出现的次数,在使用之前我们需要先导入文件 import collections 初始化一个计数器 im ...

  7. 计数器:counter

    组成:2属性,1方法 属性1: counter-reset 命名 属性2: counter-increment 启动/自增 方法 : counter()/counters() 调用方法 1.计数器 命 ...

  8. Python:collections.Counter

    collections是Python内建的一个集合模块,其中提供了许多有用的集合类: namedtuple:只有属性的简易类 deque:双向增删的List ChainMap:多个字典的链接 Coun ...

  9. Cassandra 计数器counter类型和它的限制

    文档基础 Cassandra 2.* CQL3.1 翻译多数来自这个文档 更新于2015年9月7日,最后有参考资料 作为Cassandra的一种类型之一,Counter类型算是限制最多的一个.Coun ...

随机推荐

  1. (转)简单介绍java Enumeration

    简单介绍java Enumeration 分类: java技术备份 java数据结构objectstringclass存储 Enumeration接口  Enumeration接口本身不是一个数据结构 ...

  2. (转)Spring Bean Scope 有状态的Bean 无状态的Bean

    有状态会话bean   :每个用户有自己特有的一个实例,在用户的生存期内,bean保持了用户的信息,即“有状态”:一旦用户灭亡(调用结束或实例结束),bean的生命期也告结束.即每个用户最初都会得到一 ...

  3. OP查阅网站

    1)http://www.zhdba.com/mysqlops/ 2)

  4. rabbitMQ教程(二)一篇文章看懂rabbitMQ

    一.rabbitMQ是什么: RabbitMQ,遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上. 学过websocket的来理解rabbitMQ应该是 ...

  5. iOS项目冗余资源扫描脚本

    iOS项目冗余资源扫描脚本 随着iOS项目的版本不断迭代,app中冗余文件会越来越多,app size也持续增加,是时候需要对app冗余资源进行检测,对app进行瘦身. 使用方法: 1. 运行环境为m ...

  6. PHP appserv + ZendStudio12.5.1 + 注册码

    PHP软件安装  百度云盘 安装激活破解ZendStudio12.05(注册码)     Zend Studio 配置 apache server

  7. 七、vue中v-for有时候对页面不会重新渲染,数组变化后如何到渲染页面

      v-for不能进行双向数据绑定,页面渲染完成后,再次更改v-for遍历的数据,js里面打印的数据看到数据值已经更改,但是页面的数据就是没有渲染,这是为什么呢? vue中v-for和angularj ...

  8. Hello BlogsPark

    2017年8月4日, 今天是使用博客园的第一天, 签个到. NSLog(@"Hello BlogsPark");

  9. NYOJ--46--最少乘法次数

    最少乘法次数 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 给你一个非零整数,让你求这个数的n次方,每次相乘的结果可以在后面使用,求至少需要多少次乘.如24:2*2 ...

  10. vue指令v-pre示例解析

    v-pre会跳过该元素及其子元素的编译过程,显示原始标签. <div id="app"> <span v-pre>{{msg}} 这句不会编译</sp ...