欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~

作者:BigNerdCoding

有并发的地方就存在线程安全问题,尤其是对于 Swift 这种还没有内置并发支持的语言来说线程安全问题更为突出。下面我们通过常见的数组操作来分析其中存在的线程问题,以及如何实现一个线程安全数组。

问题所在

因为无法确定执行顺序,所以并发导致的问题一般都很难模拟和测试。不过我们可以通过下面这段代码来模拟一个并发情形下导致的数据竞争问题。

var array = [Int]()

DispatchQueue.concurrentPerform(iterations: ) { index in
let last = array.last ??
array.append(last + )
}

这段代码中我们对数组 array 进行了 1000 次并发修改操作,虽然有些夸张但是它能很好的揭示一些并发环境下数组写操作存在的一些问题。因为对于值类型来说 Swift 采用的是 Copy On Write 机制,所以在进行 Copy On Write 处理是可能数组已经被另一个写操作给修改了。这就造成了数组中元素和数据的丢失现象,如下:

Unsafe loop count: .
Unsafe loop count: .
Unsafe loop count: .
Unsafe loop count: .

串行队列

这应该是大家都能想到的一种最常见处理方式。 由于串行队列每次都只能运行一个进程,所以即使有多个数组写操作进程我们也能确保资源的互斥访问。这样数组是从设计的并发进程安全的。

let queue = DispatchQueue(label: "SafeArrayQueue")

queue.async() {
// 写操作
} queue.sync() {
// 读操作
}

由于写操作并不需要返回操作结果,所有这里可以使用异步的方式进行。而对于读操作来说则必须采用同步的方式实时返回操作结果。但是串行队列有一个最为明显的缺陷:多个读操作之间也是互斥的。很显然这种方式太过粗暴存在明显的性能问题,毕竟读操作的频率直觉上是要高过写操作的。

并发队列

采用并发队列我们就可以很好的解决上面提到的多个读操作的性能问题,不过随之而来的就是写操作的数据竞争。这与我们在学习操作系统是的 读者-作者 问题本质上是一类问题,我们可以通过共享互斥锁来解决写操作的数据竞争问题。对于 iOS 来说它就是 GCD 中的写栏栅 barrier 机制。

let queue = DispatchQueue(label: "SafeArrayQueue", attributes: .concurrent)

queue.async(flags: .barrier) {
// 写操作
} queue.sync() {
// 读操作
}

上面代码中我们对异步的写操作设置了 barrier 标示,这意味着在执行异步操作代码的时候队列不能执行其他代码。而对于同步的读操作来说,由于是并发队列同时读取数据并不会存在任何性能问题。

实践

/// A thread-safe array.
public class SafeArray<Element> {
fileprivate let queue = DispatchQueue(label: "Com.BigNerdCoding.SafeArray", attributes: .concurrent)
fileprivate var array = [Element]()
} // MARK: - Properties
public extension SafeArray { var first: Element? {
var result: Element?
queue.sync { result = self.array.first }
return result
} var last: Element? {
var result: Element?
queue.sync { result = self.array.last }
return result
} var count: Int {
var result =
queue.sync { result = self.array.count }
return result
} var isEmpty: Bool {
var result = false
queue.sync { result = self.array.isEmpty }
return result
} var description: String {
var result = ""
queue.sync { result = self.array.description }
return result
}
} // MARK: - 读操作
public extension SafeArray {
func first(where predicate: (Element) -> Bool) -> Element? {
var result: Element?
queue.sync { result = self.array.first(where: predicate) }
return result
} func filter(_ isIncluded: (Element) -> Bool) -> [Element] {
var result = [Element]()
queue.sync { result = self.array.filter(isIncluded) }
return result
} func index(where predicate: (Element) -> Bool) -> Int? {
var result: Int?
queue.sync { result = self.array.index(where: predicate) }
return result
} func sorted(by areInIncreasingOrder: (Element, Element) -> Bool) -> [Element] {
var result = [Element]()
queue.sync { result = self.array.sorted(by: areInIncreasingOrder) }
return result
} func flatMap<ElementOfResult>(_ transform: (Element) -> ElementOfResult?) -> [ElementOfResult] {
var result = [ElementOfResult]()
queue.sync { result = self.array.flatMap(transform) }
return result
} func forEach(_ body: (Element) -> Void) {
queue.sync { self.array.forEach(body) }
} func contains(where predicate: (Element) -> Bool) -> Bool {
var result = false
queue.sync { result = self.array.contains(where: predicate) }
return result
}
} // MARK: - 写操作
public extension SafeArray { func append( _ element: Element) {
queue.async(flags: .barrier) {
self.array.append(element)
}
} func append( _ elements: [Element]) {
queue.async(flags: .barrier) {
self.array += elements
}
} func insert( _ element: Element, at index: Int) {
queue.async(flags: .barrier) {
self.array.insert(element, at: index)
}
} func remove(at index: Int, completion: ((Element) -> Void)? = nil) {
queue.async(flags: .barrier) {
let element = self.array.remove(at: index) DispatchQueue.main.async {
completion?(element)
}
}
} func remove(where predicate: @escaping (Element) -> Bool, completion: ((Element) -> Void)? = nil) {
queue.async(flags: .barrier) {
guard let index = self.array.index(where: predicate) else { return }
let element = self.array.remove(at: index) DispatchQueue.main.async {
completion?(element)
}
}
} func removeAll(completion: (([Element]) -> Void)? = nil) {
queue.async(flags: .barrier) {
let elements = self.array
self.array.removeAll() DispatchQueue.main.async {
completion?(elements)
}
}
}
} public extension SafeArray { subscript(index: Int) -> Element? {
get {
var result: Element? queue.sync {
guard self.array.startIndex..<self.array.endIndex ~= index else { return }
result = self.array[index]
} return result
}
set {
guard let newValue = newValue else { return } queue.async(flags: .barrier) {
self.array[index] = newValue
}
}
}
} // MARK: - Equatable
public extension SafeArray where Element: Equatable { func contains(_ element: Element) -> Bool {
var result = false
queue.sync { result = self.array.contains(element) }
return result
}
} // MARK: - 自定义操作符
public extension SynchronizedArray { static func +=(left: inout SynchronizedArray, right: Element) {
left.append(right)
} static func +=(left: inout SynchronizedArray, right: [Element]) {
left.append(right)
}
}

通过 filePrivate 属性 arrayqueue , SafeArray 成功的实现了大多数数组常用功能,更为关键的是该类型并发安全:所有的写操作都通过 barrier 方式的异步进行,而读操作则与内置 Array 没有什么区别。

需要注意的是:我们使用同样的方式可以实现并发安全的 Dictionary 类似:SynchronizedDictionary。

接下来,我们可以对传统的非并发安全数组和 SafeArray 进行以下比较:

import Foundation
import PlaygroundSupport // Thread-unsafe array
do {
var array = [Int]()
var iterations =
let start = Date().timeIntervalSince1970 DispatchQueue.concurrentPerform(iterations: iterations) { index in
let last = array.last ??
array.append(last + ) DispatchQueue.global().sync {
iterations -= // Final loop
guard iterations <= else { return }
let message = String(format: "Unsafe loop took %.3f seconds, count: %d.",
Date().timeIntervalSince1970 - start,
array.count)
print(message)
}
}
} // Thread-safe array
do {
var array = SafeArray<Int>()
var iterations =
let start = Date().timeIntervalSince1970 DispatchQueue.concurrentPerform(iterations: iterations) { index in
let last = array.last ??
array.append(last + ) DispatchQueue.global().sync {
iterations -= // Final loop
guard iterations <= else { return }
let message = String(format: "Safe loop took %.3f seconds, count: %d.",
Date().timeIntervalSince1970 - start,
array.count)
print(message)
}
}
} PlaygroundPage.current.needsIndefiniteExecution = true

得到的输出可能如下:

Unsafe loop took 1.031 seconds, count: .
Safe loop took 1.363 seconds, count: .

虽然由于使用了 GCD 机制导致速度慢了 30% 左右并且使用了更多的内存,但是与之对应的是我们实现了一个并发安全的数组类型。

相关阅读

Swift 线程安全数组的更多相关文章

  1. Swift中的数组

    学习来自<极客学院:Swift中的字符串和集合> 工具:Xcode6.4 直接上基础的示例代码,多敲多体会就会有收获:百看不如一敲,一敲就会 import Foundation //数组: ...

  2. Swift学习—字符串&数组&字典

    字符串 OC和Swift中字符串的区别 在OC中字符串类型时NSString,在Swift中字符串类型是String OC中字符串@"",Swift中字符串"" ...

  3. [Swift 语法点滴]——数组参数

    Swift语言一如既往的继承了苹果公司卓尔不群的奇葩思维方式,总是要弄得跟别的语言不一样,才能显出它的特殊 比如用数组作为参数上,这格式实在是没有试出来,找了stackoverflow,才找到相应信息 ...

  4. Swift不可变数组

    Objective-C编写了2个不同的类来区分不可变数组(NSArray)和可变数组(NSMutableArray): Swift通过使用常量和变量来区分不可变数组和可变数组. 只要将数组定义为常量, ...

  5. swift学习之数组

    首先数组的定义:以有序的方式存储同样类型的值 (1)数组的简写(shorthand)语法 你能够通过Array<Element>,在这里,Element时数组存储元素的值的类型.也能够通过 ...

  6. Swift初探02 数组、集合、元组、字典

    数组.集合.元组.字典 每一门语言基本都会有这些数据结构,swift也不例外,而作为一门现代的语言,swift提供了很多的现成的方法给我们选择. 一.数组 01 数组的定义 // 三种声明方式 var ...

  7. Swift 循环、数组 字典的遍历

    import Foundation // 数组声明 var arr = [String]() // 数组循环添加项 ...{ arr.append("Item \(index)") ...

  8. 初学swift笔记-数组、字典、元组(三)

    数组的使用.字典的使用.元组的使用 import Foundation //1.定义数组 //集合数据 数组.字典 ,,,]//常用定义 ,,,]//常用定义 ,,,]//范型定义 ,,,] arr_ ...

  9. [Swift]LeetCode189. 旋转数组 | Rotate Array

    Given an array, rotate the array to the right by k steps, where k is non-negative. Example 1: Input: ...

随机推荐

  1. Coredata中的多线程

    =================== 疑问: 1.coredata是什么?结构 2.如果在简单的demo中,我们可以在主线程中使用coredata.但是如果在真正的大项目中,这样可行么? 3.假设都 ...

  2. 五、在IDEA中使用GIt版本控制并将本地代码上传至Github

    一.安装git     Git工具下载:https://git-scm.com/downloads 从官网下载.安装很简单,基本都是下一步. 安装完的第一件事情就是创建一个Git用户: git con ...

  3. How to use VisualSVN Server and TortoiseSVN to host your codes and control your codes' version

    ###############################   PART ONE   ############################### #1. Introduction of the ...

  4. Linux系列教程(十一)——Linux软件包管理之RPM命令

    前面我们介绍了Linux系统的常用命令介绍和文本编辑器vim命令的介绍.那么从这篇博客开始,我们会正式的讲解Linux的系统管理,首先要讲的是Linux的软件包管理. 1.Linux软件包分类 一.源 ...

  5. 从json_encode过来的的字符串被返回到html页面时的解析

    在工作过程中经常需要向服务器请求数据.在需要返回多个值的时候,使用json_encode处理数组然后返回是很常用的做法.如果没有指定返回数据类型的情况下,默认返回的是json格式的字符串.那么需要将这 ...

  6. poj 1759 Garland

    Garland Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2365   Accepted: 1007 Descripti ...

  7. 0_Simple__cppOverload

    使用cuda内质结构 cudaFuncAttributes 来观察核函数的共享内存.寄存器数量. ▶ 源代码: /*cppOverload_kernel.cuh*/ __global__ void s ...

  8. 获取标签的src属性兼容性

    获取节点如script标签的src属性时,针对非IE6,IE7可以直接使用src属性,但在IE6-7中存在问题,可以借助getAttribute方法 getAttribute(attr,iflag) ...

  9. JS5模拟类

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. JavaScript系列-----对象基于哈希存储(<Key,Value>之Key篇) (1)

    1.Hash表的结构 首先,允许我们花一点时间来简单介绍hash表. 1.什么是hash表 hash表是一种二维结构,管理着一对对<Key,Value>这样的键值对,Hash表的结构如下图 ...