Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13717   Accepted: 5824

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

题目链接:POJ 3177

给你可能有多个的无向图,求最少加几条边使得图成为一个双连通分量。

做法:tarjan求出桥并把桥边标记删除,再DFS出各个连通块,并标注上所属块id,然后统计缩点之后的每个点的度,显然叶子节点的度为1即只连着一条边,但由于是无向图,会重复算一次,因此实际上所有点的度会多一倍,记叶子节点的个数为$leaf$,则答案为$(leaf+1)/2$,为什么是这样呢?因为当叶子为偶数的时候,可以找到具有最远LCA的叶子,两两之间连一条边形成环,这样便融入了双连通分量中而且这样是最优的方案,奇数的话剩下的一个随意找一个叶子融合一下就行了,这题据说有重边,用id处理一下即可。

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=5010;
const int M=10010;
struct edge
{
int to,nxt;
int id,flag;
};
edge E[M<<1];
int head[N],tot;
int dfn[N],low[N],st[N],ts,scc,top,belong[N],deg[N];
bitset<N> ins; void init()
{
CLR(head,-1);
tot=0;
CLR(dfn,0);
CLR(low,0);
ts=scc=top=0;
CLR(belong,0);
CLR(deg,0);
ins.reset();
}
inline void add(int s,int t,int id)
{
E[tot].to=t;
E[tot].id=id;
E[tot].flag=false;
E[tot].nxt=head[s];
head[s]=tot++;
}
void Tarjan(int u,int id)
{
dfn[u]=low[u]=++ts;
ins[u]=1;
st[top++]=u;
int i,v;
for (i=head[u]; ~i; i=E[i].nxt)
{
if(E[i].id==id)
continue;
v=E[i].to;
if(!dfn[v])
{
Tarjan(v,E[i].id);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])
{
E[i].flag=true;
E[i^1].flag=true;
}
}
else if(ins[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++scc;
do
{
v=st[--top];
ins[v]=0;
}while (u!=v);
}
}
void dfs(int u,int x)
{
belong[u]=x;
ins[u]=1;
for (int i=head[u]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(!ins[v]&&!E[i].flag)
dfs(v,x);
}
}
int main(void)
{
int n,m,a,b,i,j;
while (~scanf("%d%d",&n,&m))
{
init();
for (i=0; i<m; ++i)
{
scanf("%d%d",&a,&b);
add(a,b,i);
add(b,a,i);
}
for (i=1; i<=n; ++i)
if(!dfn[i])
Tarjan(i,-1);
ins.reset();
int block=0;
for (i=1; i<=n; ++i)
if(!ins[i])
dfs(i,++block);
for (i=1; i<=n; ++i)
{
for (j=head[i]; ~j; j=E[j].nxt)
{
int v=E[j].to;
if(belong[i]!=belong[v])
{
++deg[belong[i]];
++deg[belong[v]];
}
}
}
int ans=0;
for (i=1; i<=block; ++i)
if(deg[i]==2)
++ans;
printf("%d\n",(ans+1)>>1);
}
return 0;
}

POJ 3177 Redundant Paths(边双连通的构造)的更多相关文章

  1. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  2. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  3. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  4. POJ 3177 Redundant Paths 边双(重边)缩点

    分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...

  5. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  6. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  7. poj 3177 Redundant Paths(tarjan边双连通)

    题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...

  8. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  9. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

随机推荐

  1. idea之resource配置

    1.问题 在idea中配置springmvc项目,用hibernate管理数据库,在web.xml中作如下配置: <!--配置hibernate数据库连接--> <listener& ...

  2. wdcp安装memcached解决办法

    1.下载libevent-1.4.14b-stable.tar.gz和memcached-1.4.15.tar.gz这两个文件,上传到服务器,并给它一个可用的下载地址, 如http://地址/memc ...

  3. C/C++:C++中static,extern和extern "C"关键字

    1. extern 变量 extern 表明该变量在别的地方已经定义过了,在这里要使用那个变量. 当extern不与"C"在一起修饰变量或函数时,如在头文件中: extern in ...

  4. layer使用方法

    type - 基本层类型 类型:Number,默认:0 layer提供了5种层类型.可传入的值有:0(信息框,默认)1(页面层)2(iframe层)3(加载层)4(tips层). 若你采用layer. ...

  5. CAEmitterLayer实现雪花效果

    CAEmitterLayer 简介 在iOS5.0中,Apple引入了CAEmitterLayer层,CAEmitterLayer是一个高性能的粒子效果引擎,被用来创建实时粒子动画,如:烟雾,火,雨等 ...

  6. 使用原生ajax访问后台数据并将其展现在前端页面中(小菜鸟自己整理玩的,大神勿喷)

    首先你要有php的环境,关于php环境的搭建,php本地站点的搭建,此处不再重复请看这里:http://www.cnblogs.com/Gabriel-Wei/p/5950465.html我们把wam ...

  7. 安装学习nginx记录

    通过查看nginx目录下的log文件,发现80端口没有权限使用 查找文章发现: netstat -aon|findstr ":80" 有的进程ID占用多了80端口,看监听的端口 启 ...

  8. c语言for循环

    #include<stdio.h>#include<windows.h>#include <limits.h>#include <math.h>void ...

  9. 网站开发HTML部分课堂小结

    网页分为静态网页和动态网页两种 常用的是动态网页 静态网页修改数据是需要修改源代码,动态网页通过后台网页就可以修改静态网页有:HTML 内容(Hyper Text Markup Language 超文 ...

  10. 与你相遇好幸运,服务器node环境安装

    >服务器更改root密码 sudo passwd root >服务器ubuntu安装ssh apt-get install openssh-server >服务器开启root用户密码 ...