题目描述

从前有个括号序列$s$,满足$|s|=m$。你需要统计括号序列对$(p,q)$的数量。
其中$(p,q)$满足$|p|+|s|+|q|=n$,且$p+s+q$是一个合法的括号序列。


输入格式

从文件$bracket.in$中读入数据。第一行两个正整数$n,m$。
第二行一个长度为$m$的括号序列,表示$s$。


输出格式

输出到文件$bracket.out$中。
输出一行一个整数,表示符合条件的$(p,q)$的数量对$10^9+7$取模的值。


样例

样例输入1:

4 1 (

样例输出1:

4

样例输入2:

4 4 (())

样例输出2:

1

样例输入3:

4 3 (((

样例输出3:

0


数据范围与提示

对于$10\%$的数据,$n\leqslant 20$;
对于$25\%$的数据,$n\leqslant 200$;
对于另外$5\%$的数据,$n=m$;
对于$55\%$的数据,$n−m\leqslant 200$;
对于$100\%$的数据,$1\leqslant m\leqslant n\leqslant 10^5,n−m\leqslant 2,000$。


题解

首先,不妨设左括号为$+1$,右括号为$-1$,那么要满足最后和为$0$,且所有前缀不小于$0$。

对于原串处理时的最小前缀如果小于$0$,则必须在原串前加左括号使之合法。

考虑$DP$,设$dp[i][j]$表示长度为$i$,总和为$j$的括号序列数量,那么$p$的方案数为$dp[i][j]$,$q$的方案数为$dp[n-m-i][j-a]$($a$为原串的总和)。

将其乘积相加即为答案。

时间复杂度:$\Theta((n-m)^2)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n,m;
char ch[100001];
int res,minn;
long long dp[2001][2001],ans;
int main()
{
scanf("%d%d%s",&n,&m,ch+1);
for(int i=1;i<=m;i++)
{
if(ch[i]=='(')res++;
else res--;
minn=min(minn,res);
}
dp[0][0]=1;
for(int i=1;i<=n-m;i++)
for(int j=0;j<=i;j++)
{
dp[i][j]=dp[i-1][j+1];
if(j)dp[i][j]=(dp[i][j]+dp[i-1][j-1])%mod;
}
for(int i=0;i<=n-m;i++)
for(int j=0;j<=i;j++)
if(j+res<=n-m&&j+minn>=0)
ans=(ans+dp[i][j]*dp[n-m-i][res+j]%mod)%mod;
printf("%lld",ans);
return 0;
}

rp++

[CSP-S模拟测试]:简单的序列(DP)的更多相关文章

  1. [CSP-S模拟测试]:简单的括号序列(组合数)

    题目传送门(内部题82) 输入格式 一行一个字符串$ss$,保证$ss$中只包含$'('$和$')'$. 输出格式 一行一个整数,表示满足要求的子序列数对$10^9+7$的结果. 样例 样例输入1: ...

  2. [CSP-S模拟测试]:简单的期望(DP)

    题目描述 从前有个变量$x$,它的初始值已给出. 你会依次执行$n$次操作,每次操作有$p\%$的概率令$x=x\times 2$,$(100−p)\%$的概率令$x=x+1$. 假设最后得到的值为$ ...

  3. [CSP-S模拟测试]:优化(贪心+DP)

    题目描述 $visit\text{_}world$发现有下优化问题可以用很平凡的技巧解决,所以他给你分享了这样一道题:现在有长度为$N$的整数序列$\{ a_i\}$,你需要从中选出$K$个不想叫的连 ...

  4. NOIP模拟测试3「序列·熟练剖分·建造游乐园(play)」

    ---恢复内容开始--- 序列 刚调出来样例就A了,假装是水题. 因为是乱序,我们要求出来每两项之间最小公比,而不是直接比 求出来每两项之间最小公比,然后扫一遍就完了.(还要注意重复情况) 那么问题就 ...

  5. [CSP-S模拟测试]:w(树上DP)

    题目背景 $\frac{1}{4}$遇到了一道水题,双完全不会做,于是去请教小$D$.小$D$看了${0.607}^2$眼就切掉了这题,嘲讽了$\frac{1}{4}$一番就离开了.于是,$\frac ...

  6. [CSP-S模拟测试]:赤壁情(DP)

    前赤壁赋 壬戌之秋,七月既望,苏子与客泛舟游于赤壁之下.清风徐来,水波不兴.举酒属客,诵明月之诗,歌窈窕之章.少焉,月出于东山之上,徘徊于斗牛之间.白露横江,水光接天.纵一苇之所如,凌万顷之茫然.浩浩 ...

  7. JZOJ5804. 【2018.08.12提高A组模拟】简单的序列

    性质:每个位置的前缀和必须大于0,总和=0.以此dp即可. #include <iostream> #include <cstdio> #include <cstring ...

  8. [CSP-S模拟测试]:B(期望DP)

    题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...

  9. [CSP-S模拟测试]:密码(数位DP+库默尔定理)

    题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...

随机推荐

  1. JPA-style positional param was not an integral ordinal 异常

    JPA-style positional param was not an integral ordinal 多是sql之间的空格问题,或者sql拼接问题. 字符串与字符串直接相加要加空格

  2. 分享一个linux中测试网站是否正常的shell脚本

    #! /bin/bash #Author=Harry CheckUrl() { #<==定义函数,名字为CheckUrl timeout=5 #<==定义wget访问的超时时间,超时就退出 ...

  3. tomcat下的日志配置详细说明

    #可配置项(5类日志):catalina.localhost.manager.admin.host-manager handlers = 1catalina.org.apache.juli.FileH ...

  4. 【玩转Eclipse】——eclipse实现代码块折叠-类似于VS中的#region……#endregion

    [玩转Eclipse]——eclipse实现代码块折叠-类似于VS中的#region……#endregion http://www.cnblogs.com/Micheal-G/articles/507 ...

  5. Docker 安装、卸载、启动、停止

    1.1 查看当前系统的内核版本 查看当前系统的内核版本是否高于 3.10 英文文档:https://docs.docker.com/ 中文文档:https://docs.docker-cn.com/  ...

  6. ELK + filebeat集群部署

    ELK + filebeat集群部署 一.ELK简介 1. Elasticsearch Elasticsearch是一个实时的分布式搜索分析引擎, 它能让你以一个之前从未有过的速度和规模,去探索你的数 ...

  7. C# wpf image绑定viewModel没有显示图片

    在wpf绑定图片,用viewModel的图片绑定image 我是用viewModel.cs public class viewModel:INotifyPropertyChanged { #regio ...

  8. 如何利用scrapy新建爬虫项目

    抓取豆瓣top250电影数据,并将数据保存为csv.json和存储到monogo数据库中,目标站点:https://movie.douban.com/top250 一.新建项目 打开cmd命令窗口,输 ...

  9. CentOS7搭建FastDFS+Nginx

    1. FastDFS 介绍 FastDFS是一个开源的分布式文件系统,她对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合以文件 ...

  10. CTF各种资源:题目、工具、资料

    目录 题目汇总 Reverse 签到题 Web Web中等难度 Crypto 基础网站 各类工具 综合 Web Payloads 逆向 Pwn 取证 题目汇总 这里收集了我做过的CTF题目 Rever ...