[CSP-S模拟测试]:蛇(DP+构造+哈希)
题目传送门(内部题140)
输入格式
前两行有两个长度相同的字符串,描述林先森花园上的字母。
第三行一个字符串$S$。
输出格式
输出一行一个整数,表示有多少种可能的蛇,对$10^9+7$取模。
样例
样例输入1:
rwby
ybwr
rwby
样例输出1:
4
样例输入2:
ooo
ooo
oo
样例输出2:
14
数据范围与提示
对于$20\%$的数据,$n,|S|\leqslant 16$。
对于$40\%$的数据,$n,|S|\leqslant 40$。
对于$60\%$的数据,$n,|S|\leqslant 200$。
对于$100\%$的数据,$1\leqslant n,|S|\leqslant 2,000$,输入中只包含小写字母。
题解
先来考虑路径蛇的路径,可以将其拆解成如下图中的三部分$\downarrow$

蛇一定是先向一个方向走$a$格,再回来;然后乱走(扭动着),然后再向另一个方向走$b$格,再回来。
一样不一样可以用哈希判断。
然后考虑$DP$,定义$dp[i]][j][k]$表示到了点$(i,j)$,匹配到了$k$的方案数。
避免出现环可以外层循环$k$。
为了方便,可以先默认向一个方向走;然后再把整张图翻转再跑一遍就好了。
注意蛇的长度为$1$和$2$的情况下需要特判。
时间复杂度:$\Theta(|S|^2)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
struct rec{int s,x,y;};
int a[2][2001],b[2001],n,s;
char ch[2001];
long long dp[2][2001][4001][2],ans;
unsigned long long hsh[2001],flag[2001]={1},has[2][2][2002];
unsigned long long ask(bool x,bool y,int l,int r){return y?has[x][y][r]-has[x][y][l+1]*flag[l-r+1]:has[x][y][r]-has[x][y][l-1]*flag[r-l+1];}
unsigned long long get(int l,int r){return hsh[r]-hsh[l-1]*flag[r-l+1];}
void work()
{
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
has[i][0][j]=has[i][0][j-1]*131+a[i][j];
for(int i=0;i<2;i++)
for(int j=n;j;j--)
has[i][1][j]=has[i][1][j+1]*131+a[i][j];
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
{
dp[i][j][1][0]=(a[i][j]==b[1]);
for(int k=2;k<=j;k++)
dp[i][j][k<<1][1]=(ask(i^1,1,j,j-k+1)==get(1,k))&&(ask(i,0,j-k+1,j)==get(k+1,k<<1));
}
for(int k=1;k<=s;k++)
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
{
if(a[i][j]!=b[k])continue;
dp[i][j][k][0]=(dp[i][j][k][0]+dp[i][j-1][k-1][0]+dp[i][j-1][k-1][1])%mod;
dp[i][j][k][1]=(dp[i][j][k][1]+dp[i^1][j][k-1][0])%mod;
}
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<=s;k++)
{
int res=(s-k)>>1;
if(!((s-k)&1)&&res!=1&&(s==k||(j+res<=n&&ask(i,0,j+1,j+res)==get(k+1,k+res)&&ask(i^1,1,j+res,j+1)==get(s-res+1,s))))
ans=(ans+dp[i][j][k][0]+dp[i][j][k][1])%mod;
}
}
int main()
{
scanf("%s",ch+1);n=strlen(ch+1);
for(int i=1;i<=n;i++)a[0][i]=ch[i]-'a'+1;
scanf("%s",ch+1);
for(int i=1;i<=n;i++)a[1][i]=ch[i]-'a'+1;
scanf("%s",ch+1);s=strlen(ch+1);
for(int i=1;i<=s;i++)
{
b[i]=ch[i]-'a'+1;
flag[i]=flag[i-1]*131;
hsh[i]=hsh[i-1]*131+b[i];
}
work();
reverse(a[0]+1,a[0]+n+1);
reverse(a[1]+1,a[1]+n+1);
memset(dp,0,sizeof(dp));
work();
if(s==1)
{
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
ans-=(a[i][j]==b[1]);
}
if(s==2)
{
for(int i=0;i<2;i++)
for(int j=1;j<=n;j++)
ans-=(a[i][j]==b[1]&&a[i^1][j]==b[2]);
}
printf("%lld",ans);
return 0;
}
rp++
[CSP-S模拟测试]:蛇(DP+构造+哈希)的更多相关文章
- [CSP-S模拟测试]:序列(构造)
题目描述 给定$N,A,B$,构造一个长度为$N$的排列,使得:$\bullet$排列长度为$N$:$\bullet$最长上升子序列长度为$A$:$\bullet$最长下降子序列长度为$B$.我们有$ ...
- csp-s模拟测试97
csp-s模拟测试97 猿型毕露.水题一眼秒,火题切不动,还是太菜了. $T1$看了一会儿感觉$woc$期望题$T1??$假的吧??. $T2$秒. $T3$什么玩意儿. 40 01:24:46 00 ...
- Mockito:一个强大的用于Java开发的模拟测试框架
https://blog.csdn.net/zhoudaxia/article/details/33056093 介绍 本文将介绍模拟测试框架Mockito的一些基础概念, 介绍该框架的优点,讲解应用 ...
- Mock 模拟测试简介及 Mockito 使用入门
Mock 是什么mock 测试就是在测试过程中,对于某些不容易构造或者不容易获取的对象,用一个虚拟的对象来创建以便测试的测试方法.这个虚拟的对象就是mock对象.mock对象就是真实对象在调试期间的代 ...
- noi2019模拟测试赛(四十七)
noi2019模拟测试赛(四十七) T1与运算(and) 题意: 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所 ...
- [考试反思]1109csp-s模拟测试106:撞词
(撞哈希了用了模拟测试28的词,所以这次就叫撞词吧) 蓝色的0... 蓝色的0... 都该联赛了还能CE呢... 考试结束前15分钟左右,期望得分300 然后对拍发现T2伪了写了一个能拿90分的垃圾随 ...
- [考试反思]1003csp-s模拟测试58:沉淀
稳住阵脚. 还可以. 至少想拿到的分都拿到了,最后一题的确因为不会按秩合并和线段树分治而想不出来. 对拍了,暴力都拍了.挺稳的. 但是其实也有波折,险些被卡内存. 如果内存使用不连续或申请的内存全部使 ...
- [考试反思]0814NOIP模拟测试21
前两名是外校的240.220.kx和skyh拿到了190的[暴力打满]的好成绩. 我第5是170分,然而160分就是第19了. 在前一晚上刚刚爆炸完毕后,心态格外平稳. 想想前一天晚上的挣扎: 啊啊啊 ...
- springboot2.0入门(四)----mock模拟测试+单元测试
一.本节主要记录模拟测试.单元测试: 二.mock 测试 1.1什么是Mock? 在面向对象程序设计中,模拟对象(英语:mock object,也译作模仿对象)是以可控的方式模拟真实对象行为的假的对象 ...
随机推荐
- PHP使用CURL抓取页面
cURL的基本原理 curl是利用URL语法在命令行方式下工作的开源文件传输工具,他能够从互联网上获得各种各样的网络资源.简单来说,curl就是抓取页面的升级版. <?php //1.初始化,创 ...
- hadoop批量命令脚本xcall.sh及jps找不到命令解决
1.xcall.sh批量命令脚本: #!/bin/bash params=$@ i=128 for (( i=128 ; i <= 131 ; i = $i + 1 )) ; do echo = ...
- Ubuntu分区挂载
创建主分区: 25G 主分区 空间起始位置 Ext4日志文件系统 / (ps:安装主要放这了,原因不明) 创建swap分区: 8192MB 逻辑分区 空间起 ...
- luogu P4006 小 Y 和二叉树
luogu loj 可以发现度数\(< 3\)的点可以作为先序遍历的第一个点,那么就把度数\(< 3\)的编号最小的点作为第一个点.然后现在要确定它的左右儿子(或者是右儿子和父亲).我们把 ...
- 关于redis的几件小事(八)缓存与数据库双写时的数据一致性
1.Cache aside pattern 这是最经典的 缓存+数据库 读写模式,操作如下: ①读的时候,先读缓存,缓存没有就读数据库,然后将取出的数据放到缓存,同时返回请求响应. ②更新的时候,先删 ...
- Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration
---恢复内容开始--- 分析静态网络的方法:(1)节点链接图 (2)可视化邻接矩阵 and(3)hierarchical edge bundles. 分析网络演变的方法:(1)时间到时间的映射和(2 ...
- Idea java 程序打jar包(maven)
1.准备好控制台程序 2.引用的项目打包(公共类接口) 3.开发打包 点击运行 打包结果如下
- 常用的商业级和免费开源Web漏洞扫描工具
Scanv 国内著名的商业级在线漏洞扫描.可以长期关注,经常会有免费活动.SCANV具备自动探测发现无主资产.僵尸资产的功能,并对资产进行全生命周期的管理.主动进行网络主机探测.端口探测扫描,硬件特性 ...
- Mongodb操作3-可视化工具使用
1.无密码登录 1.创建连接 输入ip后 先测试在链接 2.有密码登录 设置密码 1.选择主数据库 >>>use admin # 第一步 选择主数据 switched to db a ...
- 初学者如何从零学习人工智能?(AI)
一.机器学习 有关机器学习领域的最佳介绍,请观看Coursera的Andrew Ng机器学习课程. 它解释了基本概念,并让你很好地理解最重要的算法. 有关ML算法的简要概述,查看这个TutsPlus课 ...