题目链接:POJ 1410

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example:

line: start point: (4,9)

end point: (11,2)

rectangle: left-top: (1,5)

right-bottom: (7,1)

Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format:

xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

Source

Southwestern European Regional Contest 1995

Solution

题意

给定一个矩形和一条线段,判断线段是否与矩形相交或者在矩形内部。

思路

判断线段是否与矩形每条边相交。至于线段是否在矩形内,判断是否线段两个端点在矩形内即可。

计算几何模板来在 kuangbin 的模板。

Code

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10; inline int sgn(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator ==(Point b) const {
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
}
Point operator -(const Point &b) const {
return Point(x - b.x, y - b.y);
}
//叉积
double operator ^(const Point &b) const {
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b) const {
return x*b.x + y*b.y;
}
}; class Line {
public:
Point s, e;
db angle;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
inline void input() {
scanf("%lf%lf%lf%lf", &s.x, &s.y, &e.x, &e.y);
}
//`两线段相交判断`
//`2 规范相交`
//`1 非规范相交`
//`0 不相交`
int segcrossseg(Line v){
int d1 = sgn((e - s) ^ (v.s - s));
int d2 = sgn((e - s) ^ (v.e - s));
int d3 = sgn((v.e - v.s) ^ (s - v.s));
int d4 = sgn((v.e - v.s) ^ (e - v.s));
if( (d1 ^ d2) == -2 && (d3 ^ d4) == -2 ) return 2;
return (d1 == 0 && sgn((v.s - s)*(v.s - e)) <= 0) ||
(d2 == 0 && sgn((v.e - s)*(v.e - e)) <= 0) ||
(d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
(d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
}
// 点在线段上的判断
bool pointonseg(Point p) {
return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;
}
}; struct Rec {
const static int n = 4;
Point p[4];
Line l[4];
void getline(){
for(int i = 0; i < n; ++i) {
l[i] = Line(p[i], p[(i + 1) % n]);
}
}
//`判断点和任意多边形的关系`
//` 3 点上`
//` 2 边上`
//` 1 内部`
//` 0 外部`
int relationpoint(Point q) {
for(int i = 0; i < n; ++i) {
if(p[i] == q) return 3;
}
getline();
for(int i = 0; i < n; ++i) {
if(l[i].pointonseg(q)) return 2;
}
int cnt = 0;
for(int i = 0; i < n; ++i) {
int j = (i + 1) % n;
int k = sgn((q - p[j])^(p[i] - p[j]));
int u = sgn(p[i].y - q.y);
int v = sgn(p[j].y - q.y);
if(k > 0 && u < 0 && v >= 0) cnt++;
if(k < 0 && v < 0 && u >= 0) cnt--;
}
return cnt != 0;
}
}; int main() {
int T;
scanf("%d", &T);
while(T--) {
Point a, b;
a.input(), b.input();
Line l = Line(a, b);
Rec rec;
a.input(), b.input();
rec.p[0] = Point(min(a.x, b.x), min(a.y, b.y));
rec.p[1] = Point(max(a.x, b.x), min(a.y, b.y));
rec.p[2] = Point(max(a.x, b.x), max(a.y, b.y));
rec.p[3] = Point(min(a.x, b.x), max(a.y, b.y));
if(l.segcrossseg(Line(rec.p[0], rec.p[1]))) {
printf("T\n");
continue;
}
if(l.segcrossseg(Line(rec.p[1], rec.p[2]))) {
printf("T\n");
continue;
}
if(l.segcrossseg(Line(rec.p[2], rec.p[3]))) {
printf("T\n");
continue;
}
if(l.segcrossseg(Line(rec.p[3], rec.p[0]))) {
printf("T\n");
continue;
}
if(rec.relationpoint(l.s) || rec.relationpoint(l.e)) {
printf("T\n");
continue;
}
printf("F\n");
}
return 0;
}

POJ 1410 Intersection (计算几何)的更多相关文章

  1. [POJ 1410] Intersection(线段与矩形交)

    题目链接:http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  2. POJ 1410 Intersection(计算几何)

    题目大意:题目意思很简单,就是说有一个矩阵是实心的,给出一条线段,问线段和矩阵是否相交解题思路:用到了线段与线段是否交叉,然后再判断线段是否在矩阵里面,这里要注意的是,他给出的矩阵的坐标明显不是左上和 ...

  3. POJ 1410 Intersection(判断线段交和点在矩形内)

    Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9996   Accepted: 2632 Desc ...

  4. POJ 1410 Intersection(线段相交&amp;&amp;推断点在矩形内&amp;&amp;坑爹)

    Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段全然在矩形内部算相交:线段与矩形随意一条边不规范相交算相交. 思路:知道详细的相交规则之后题事实上是不难的,可是还有 ...

  5. POJ 1410 Intersection (线段和矩形相交)

    题目: Description You are to write a program that has to decide whether a given line segment intersect ...

  6. poj 1410 Intersection (判断线段与矩形相交 判线段相交)

    题目链接 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12040   Accepted: 312 ...

  7. POJ 1410 Intersection --几何,线段相交

    题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内. 解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可.这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单 ...

  8. 简单几何(线段相交) POJ 1410 Intersection

    题目传送门 题意:一个矩形和一条线段,问是否有相交 分析:考虑各种情况.坑点:给出的矩形的两个端点是无序的,还有线段完全在矩形内也算相交 /****************************** ...

  9. POJ 1410 Intersection 数据错误

    题目要求判断一条线段和一个矩形是否相交,或者是否在矩形里面(题目好像没说?) 思路就是直接暴力判断和矩形四条边是否相交,和线段的坐标是否在矩形的坐标范围即可. 然后题目的数据,(xleft,ytop) ...

随机推荐

  1. 洛谷 P1049 装箱问题(01背包)

    一道水题,但看到好久没有发博客了,再一看是一道noip普及组t4,就做了. 题目链接 https://www.luogu.org/problemnew/show/P1049 解题思路 一道裸的01背包 ...

  2. Codeforces Round #574 (Div. 2) A~E Solution

    A. Drinks Choosing 有 $n$ 个人,每个人各有一种最喜欢的饮料,但是买饮料的时候只能同一种的两个两个买(两个一对) 学校只打算卖 $\left \lceil \frac{n}{2} ...

  3. sig文件制作

    一 配置环境变量 将link.exe,pcf.exe,sigmake.exe添加进PATH环境变量(选择“我的电脑” >“属性”>“高级” >“环境变量”>将文件地址添加进“p ...

  4. 【JAVA】 05-String类和JDK5

    链接: 笔记目录:毕向东Java基础视频教程-笔记 GitHub库:JavaBXD33 目录: <> <> 内容待整理: API-String 特点 String类: 1.St ...

  5. k3 cloud查看附件提示授予目录NetWorkService读写权限

    打开文件的时候出现下面的提示: 解决办法: 解决办法:找到C:\Program Files(x86)\Kingdee\K3Cloud\WebSite\FileUpLoadServices,在下面创建F ...

  6. YARN的job提交流程

    1.客户端向ResourceManagement 提交 运行的请求 (hadoop jar xxxx.jar) 2.ResourceManager进行检查,没有问题的时候,向客户端返回一个共享资源的路 ...

  7. tensorflow实现一个神经网络简单CNN网络

    本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测. 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist = input_da ...

  8. 【转载】Spring bean 中 constructor-arg属性

    转载地址:https://blog.csdn.net/qq_27292113/article/details/78063696 方便以后查阅

  9. 04.Linux-CentOS系统SSH连接问题

    问题:SSH远程连接时报错 Socket error Event: 32 Error: 10053.Connection closing...Socket close.Connection close ...

  10. Django——Ajax相关

    Ajax简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传输的数 ...