SecureRandom的坑
之前写随机数的时候一直用SecureRandom.getInstanceStrong()方法生成SecureRandom实例,进而调用其各种next方法。突然有一次,发现next方法卡住了, 每一次调用都需要四五分钟。google之,发现网上也有很多其他开发人员在反馈这个问题,有的说在启动的时候提案加 。但是有时候项目不是自己部署的,不是你想用什么命令就用什么命令,想替换什么文件就替换什么文件,比如某安某寿。研究SecureRandom.getInstanceStrong()方法的源码,发现最终调用的是SecureRandom.getInstance()方法,getInstance()方法的入参是Security.getProperty("securerandom.strongAlgorithms")的返回值。经测试,Security.getProperty("securerandom.strongAlgorithms")的返回值在不同平台是不一样。在windows jdk中,返回值是Windows-PRNG:SunMSCAPI,SHA1PRNG:SUN,进SecureRandom.getInstanceStrong()方法,发现最终调用的是SecureRandom.getInstance("Windows-PRNG", "SunMSCAPI"),即算法algorithm是Windows-PRNG,provider是SunMSCAPI。在mac jdk中,返回值是NativePRNGBlocking:SUN,最终调用的是SecureRandom.getInstance("NativePRNGBlocking", "SUN")。在linux jdk中,返回值是。
研究Security的getProperty(String key)静态方法:
读取的是JAVA_HOME/jre/lib/security目录中的java.security属性文件中的内容。可以很容易的在各平台看到securerandom.strongAlgorithms的值。
如果不用SecureRandom.getInstanceStrong()方法的话,可以用什么呢?可以用new SecureRandom(),也可以用getInstance()方法的一堆重载来生成SecureRandom实例。
new SecureRandom(),最终调用的是SecureRandom.getInstance("SHA1PRNG")。
在windows平台jdk的java.security文件中,有这样一段描述:
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=Windows-PRNG:SunMSCAPI,SHA1PRNG:SUN
在mac平台jdk的java.security文件中,描述如下:
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
在linux平台jdk的java.security文件中,描述如下:
# Sun Provider SecureRandom seed source.
#
# Select the primary source of seed data for the "SHA1PRNG" and
# "NativePRNG" SecureRandom implementations in the "Sun" provider.
# (Other SecureRandom implementations might also use this property.)
#
# On Unix-like systems (for example, Solaris/Linux/MacOS), the
# "NativePRNG" and "SHA1PRNG" implementations obtains seed data from
# special device files such as file:/dev/random.
#
# On Windows systems, specifying the URLs "file:/dev/random" or
# "file:/dev/urandom" will enable the native Microsoft CryptoAPI seeding
# mechanism for SHA1PRNG.
#
# By default, an attempt is made to use the entropy gathering device
# specified by the "securerandom.source" Security property. If an
# exception occurs while accessing the specified URL:
#
# SHA1PRNG:
# the traditional system/thread activity algorithm will be used.
#
# NativePRNG:
# a default value of /dev/random will be used. If neither
# are available, the implementation will be disabled.
# "file" is the only currently supported protocol type.
#
# The entropy gathering device can also be specified with the System
# property "java.security.egd". For example:
#
# % java -Djava.security.egd=file:/dev/random MainClass
#
# Specifying this System property will override the
# "securerandom.source" Security property.
#
# In addition, if "file:/dev/random" or "file:/dev/urandom" is
# specified, the "NativePRNG" implementation will be more preferred than
# SHA1PRNG in the Sun provider.
#
securerandom.source=file:/dev/random
#
# A list of known strong SecureRandom implementations.
#
# To help guide applications in selecting a suitable strong
# java.security.SecureRandom implementation, Java distributions should
# indicate a list of known strong implementations using the property.
#
# This is a comma-separated list of algorithm and/or algorithm:provider
# entries.
#
securerandom.strongAlgorithms=NativePRNGBlocking:SUN
在commons-lang3.jar包中,提供了两个随机工具类,RandomUtils和RandomStringUtils,可以使用。RandomUtils用于生成一个随机数字,而RandomStringUtils主要是生成一个随机字符串。这俩工具类底层利用的都是Random类,而没有用SecureRandom。
SecureRandom的坑的更多相关文章
- 使用 SecureRandom 产生随机数采坑记录
公众号「码海」欢迎关注 背景 我们的项目工程里经常在每个函数需要用到 Random 的地方定义一下 Random 变量(如下) public void doSomethingCommon() { Ra ...
- Android应用安全开发之浅谈加密算法的坑
<Android应用安全开发之浅谈加密算法的坑> 作者:阿里移动安全@伊樵,@舟海 阿里聚安全,一站式解决应用开发安全问题 Android开发中,难免会遇到需要加解密一些数据内 ...
- [解决]Linux Tomcat启动慢--Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [236,325] milliseconds
一.背景 今天部署项目到tomcat,执行./startup.sh命令之后,访问项目迟迟加载不出来,查看日志又没报错(其实是我粗心了,当时tomcat日志还没打印完),一开始怀疑是阿里云主机出现问题, ...
- 你真的了解字典(Dictionary)吗? C# Memory Cache 踩坑记录 .net 泛型 结构化CSS设计思维 WinForm POST上传与后台接收 高效实用的.NET开源项目 .net 笔试面试总结(3) .net 笔试面试总结(2) 依赖注入 C# RSA 加密 C#与Java AES 加密解密
你真的了解字典(Dictionary)吗? 从一道亲身经历的面试题说起 半年前,我参加我现在所在公司的面试,面试官给了一道题,说有一个Y形的链表,知道起始节点,找出交叉节点.为了便于描述,我把上面 ...
- 【解决】Linux Tomcat启动慢--Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [236,325] milliseconds
一.背景 今天部署项目到tomcat,执行./startup.sh命令之后,访问项目迟迟加载不出来,查看日志又没报错(其实是我粗心了,当时tomcat日志还没打印完),一开始怀疑是阿里云主机出现问题, ...
- 当年用httpclient时踩过的那些坑
一.前言 httpclient是java开发中最常用的工具之一,通常大家会使用其中比较基础的api去调用远程.长期开发爬虫,会接触httpclient不常用的api,同时会遇到各式各样的坑,本文将总结 ...
- 服务器端 CentOS 下配置 JDK 和 Tonmcat 踩坑合集
一.配置 JDK 时,在 /etc/profile 文件下配置环境变量,添加 #java environment export JAVA_HOME=/usr/java/jdk- export CL ...
- 微信公众号支付备忘及填坑之路-java
一.背景 最近公司给第三方开发了一个公众号,其中最重要的功能是支付,由于是第一次开发,遇到的坑特别的多,截止我写博客时,支付已经完成,在这里我把遇到的坑记录一下(不涉及退款).不得不吐槽一下,腾讯这么 ...
- 如何一步一步用DDD设计一个电商网站(九)—— 小心陷入值对象持久化的坑
阅读目录 前言 场景1的思考 场景2的思考 避坑方式 实践 结语 一.前言 在上一篇中(如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成),有一行注释的代码: public interfa ...
随机推荐
- 20191209 Linux就该这么学(4)
4. Vim编辑器与Shell命令脚本 Vim 编辑器中设置了三种模式-命令模式.末行模式和编辑模式. 命令模式:控制光标移动,可对文本进行复制.粘贴.删除和查找等工作. 输入模式:正常的文本录入. ...
- 红帽学习笔记[RHCSA] 第十课[计划任务Cron与At、逻辑卷管理]
计划任务[At & Cron Jobs] at # at 命令只能计划一次性任务但是比较方便. # 先输入时间 [root@localhost Desktop]# at 10:02 # 输入要 ...
- CentOS Linux修改默认Bash shell为Zsh shell
Shell是在程序员与服务器间建立一个桥梁,它对外提供一系列命令,让我们得以控制服务器.常用的Bash就是Shell的一种,也是Linux下默认Shell程序.这里介绍一种更强大的.更人性化的Shel ...
- [LeetCode] 矩形面积
题目链接: https://leetcode-cn.com/problems/rectangle-area 难度:中等 通过率:41.3% 题目描述: 在 二维 平面上计算出两个 由直线构成的 矩形重 ...
- 剑指offer-最小的K个数-时间效率-排序-python
题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 这就是排序题(将结果的最小K值输出) # -*- coding ...
- LOCATE()和FIND_IN_SET()
locate(substr,str) 查找substr在str中第一次出现的位置,为空时返回0 SELECT login_name, LOCATE('ning',login_name) FROM us ...
- CTP报单参数详解
交易所代码 产品类型 业务类型 价格类型 指令类型 价格类型 OrderPriceType 有效期类型 TimeCondition 成交量类型 VolumeCondition 备注 CZCE 郑商所 ...
- pycharm解释器链接如何pymongo
1.pymongo 链接数据库 # pycharm 链接我们的mogodb # 下载pymongo from pymongo import MongoClient # 客户端请求 服务端 # 链接 c ...
- 2019-11-29-dotnet-使用-Qpush-快速从电脑到手机推送文字
title author date CreateTime categories dotnet 使用 Qpush 快速从电脑到手机推送文字 lindexi 2019-11-29 08:58:57 +08 ...
- laravel-admin后台框架基本使用
建立控制器 在app/Admin/Controllers新建对应的控制器来管理某个数据表.控制器例子: <?php namespace App\Admin\Controllers; use En ...