题目链接

题意

区间两数异或在二进制下有 \(k\) 个 \(1\) 的对数。

Sol

普通莫队的话,如果要实时维护好区间内的答案需要支持区间对一个数求答案。

直接做不是很好做,容易发现其实这也就是一个区间询问。那么可以把莫队中要求的东西再次离线下来。

我们把上述询问拆成前缀相减的形式,这样我们要做到就是多次询问一个前缀对一个数的答案。

由于在数据范围下二进制下有 \(k\) 个 \(1\) 的数并不是太多,我们可以直接从前往后做,遇到一个数 \(x\) 则把 \(x\oplus number(k)\) 加入桶中 (\(number(k)\)表示二进制下有 \(k\) 个\(1\)的数)。当我们遇到一个询问 数 \(y\) 和当前前缀的答案时,只需要看 \(y\) 的桶被加入了多少个数就行了。

复杂度分析: 由于询问个数和莫队移动次数同阶,为 \(O(n\sqrt n)\) ,查询复杂度是 \(O(1)\) 的所以查询复杂度就是 \(O(n\sqrt n)\)。然后我们每加入一个数需要 最多\({14\choose 7}\)次插入操作,所以这部分复杂度为 \(O(n*{14\choose 7})\)。

愉快地提交上去后,就会 \(TLE+MLE\),因为这个复杂度还是比较紧的,而且询问个数 \(O(n\sqrt n)\) 全存下来的话会被卡空间。

怎么办呢?

发现有许多询问都是一个前缀和前缀后面那一个数的答案,这部分我们可以直接一开始预处理然后询问时直接贡献。省去存储一些询问,加快了速度。

但是这样还不够,再发现我们的另一种询问是对于一个固定的端点的询问一段区间内的数,我们可以只存一个询问。这样不仅省去了莫队时指针的移动复杂度,也省了空间,就可以过了。

code:

#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
template<class T>inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}typedef long long ll;
int n,m,k;
const int N=1e5+10;
int SIZE;
const int INF=16384;
int a[N],bl[N];ll ans[N];
struct query{
int l,r,id;
query(){l=r=id=0;}
query(int _l,int _r,int _id){l=_l,r=_r,id=_id;}
inline bool operator <(const query b)const{if(bl[l]!=bl[b.l]) return bl[l]<bl[b.l];else return r<b.r;}
}Que[N];
typedef pair<int,int> PA;
vector<query> PQ[N];
int number[3434];int numcnt=0;
#define lowbit(a) ((a)&(-a))
inline int Count(int x){int cnt=0;while(x) ++cnt,x^=lowbit(x);return cnt;}
int Pre[N],Bac[INF];ll S[N]; int main()
{
init(n),init(m),init(k);SIZE=sqrt(n);
for(int i=1;i<=n;++i) init(a[i]),bl[i]=(i-1+SIZE)/SIZE;
for(int i=0;i<INF;++i) if(Count(i)==k) number[++numcnt]=i; if(k>14) while(m--) puts("0");
else {
S[0]=0;
for(int i=1;i<=n;++i) {Pre[i]=Bac[a[i]];S[i]=S[i-1]+Pre[i];for(int j=1;j<=numcnt;++j) ++Bac[a[i]^number[j]];}S[n+1]=S[n];
Set(Bac,0);
for(int i=1;i<=m;++i) {init(Que[i].l),init(Que[i].r),Que[i].id=i;}sort(Que+1,Que+1+m);
int l=Que[1].l;int r=Que[1].l;
for(int i=1;i<=m;++i) {
const int ID=Que[i].id;
if(r<Que[i].r) {++r;ans[ID]+=S[Que[i].r]-S[r-1];PQ[l-1].emplace_back(query(r,Que[i].r,-ID));r=Que[i].r;}
if(l>Que[i].l) {--l;ans[ID]-=(S[l]-S[Que[i].l-1])+(int)(k==0)*(l-Que[i].l+1);PQ[r].emplace_back(query(Que[i].l,l,ID));l=Que[i].l;}
if(r>Que[i].r) {ans[ID]-=S[r]-S[Que[i].r];PQ[l-1].emplace_back(query(Que[i].r+1,r,ID));r=Que[i].r;}
if(l<Que[i].l) {ans[ID]+=S[Que[i].l-1]-S[l-1]+(int)(k==0)*(Que[i].l-l);PQ[r].emplace_back(query(l,Que[i].l-1,-ID));l=Que[i].l;}
}
Set(Bac,0);
for(int i=1;i<=n;++i) {
for(int j=1;j<=numcnt;++j) ++Bac[a[i]^number[j]];
for(query P:PQ[i]) {
int ID=abs(P.id),f=P.id/ID;
int l=P.l,r=P.r;ll res=0;
for(int j=l;j<=r;++j) res+=Bac[a[j]];
ans[ID]+=res*f;
}
}
for(int i=1;i<=m;++i) ans[Que[i].id]+=ans[Que[i-1].id];
for(int i=1;i<=m;++i) printf("%lld\n",ans[i]);
}
return 0;
}

【LuoguP4887】第十四分块(前体)的更多相关文章

  1. P4887 第十四分块(前体) 莫队

    题意: 给你一个序列,每次询问l,r问多少个a[i]^a[j]有k个1,k固定. 序列长度1e5,a[i]<=2^14 时限1s,空间40M 题解: 个人其实开始没什么思路,看了题解也好久,题解 ...

  2. Luogu4887 第十四分块(前体)

    sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...

  3. 洛谷P4887 第十四分块(前体)(二次离线莫队)

    题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...

  4. [洛谷P4887]第十四分块(前体)

    题目大意: 给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问. 每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\ ...

  5. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  6. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

  7. Alink漫谈(十四) :多层感知机 之 总体架构

    Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函 ...

  8. 我的MYSQL学习心得(十四) 备份和恢复

    我的MYSQL学习心得(十四) 备份和恢复 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) ...

  9. 雅虎(yahoo)前端优化十四条军规

    第一条.尽可能的减少 HTTP 的请求数 (Make Fewer HTTP Requests ) http请求是要开销的,想办法减少请求数自然可以提高网页速度.常用的方法,合并css,js(将一个页面 ...

随机推荐

  1. 修改linux内核启动顺序

    修改linux内核启动顺序 # 修改内核启动顺序x86_64 centos:cat /boot/grub2/grub.cfg |grep "menuentry" grub2-set ...

  2. ASP.NET Core EFCore 之Code First

    1.在.NET Core项目中使用Nuget引用包 Sql Server 请安装 Microsoft.EntityFrameworkCore.SqlServer 2.添加实体类 [Table(&quo ...

  3. Fiddle-常用设置和操作记录

    1.导出证书: 2.清空屏幕: 3.字段认识 4.保存会话: 5.解码

  4. SpringBoot自动化配置之四:@Conditional注解详解

    前言 之前在分析spring boot 源码时导出可见@ConditionalOnBean 之类的注解,那么它到底是如何使用的以及其工作流程如何,我们这里就围绕以下几点来分析: @Conditiona ...

  5. Maven添加镜像仓库、更改本地仓库位置

    添加镜像仓库 在conf目录下的settings.xml文件的145行左右 id表示该镜像的id mirrorOf表示为哪个仓库配置镜像,central为默认的中央仓库的id,也可以使用通配符*,来匹 ...

  6. Django2.1 authenticate 会关联数据库 is_active 的解决办法

    # 会检测用户是否是活跃状态(is_active),不活跃则返回None(默认配置)AUTHENTICATION_BACKENDS = ['django.contrib.auth.backends.M ...

  7. C# 如何判断指定文件是否正被其它程序使用

    C# 如何判断指定文件是否正被其它程序使用 起因:项目中发现在操作文件时,系统经常抛出异常,表示文件正被其它程序占用. 需求:为了事先判断,以确认指定的文件是否正被其它程序使用,需要方法进行判断. 思 ...

  8. Java中「与运算,或运算,异或运算,取反运算。」

    版权声明一:本文为博主原创文章,转载请附上原文出处链接和本声明.版权声明二:本网站的所有作品会及时更新,欢迎大家阅读后发表评论,以利作品的完善.版权声明三:对不遵守本声明或其他违法.恶意使用本网内容者 ...

  9. yii的rules验证规则

    图片验证 public function rules() { return [ [['id'], 'integer'], [['id'], 'required'], [['files'], 'file ...

  10. 15 Python之内置函数

    思维导图: https://www.processon.com/mindmap/5c10cb5ee4b0090a2c9db92f 1. 匿名函数统一的名字是:<lambda> 使用场景: ...