CF 2000 的dp题目还是有点难qwq

题意:

一行有\(n\)个空位,每个空位可以填\([1,4]\)的整数,要求:

1.有\(t\)个位置满足 \(ai−1<ai>ai+1(1<i<n)\)

2.有\(t−1\)个位置满足 \(ai−1>ai<ai+1\)

的方案总数

题解:

设 \(f[i][j][k][0/1]\) 表示 \(i\)位置 当前数是 \(j\) 已经有 \(k\) 个满足条件一的位置 上升/下降趋势

转移:

\[f[i][j][k][0]=\sum f[i-1][l][k][0] + f[i-1][l][k][1] (1<=l<j)
\]

\[f[i][j][k][1]=\sum f[i-1][l][k][1] + f[i-1][l][k-1][0] (j<l<=n)
\]

当 \(k = 0\)时说明还没有顶峰,第二个转移的后面这种情况就是0

Code

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
const int N = 27;
int n,t;
int f[N][N][N][2]; //f[i][j][k][0/1] 表示 i 位置,j高度,k个峰顶,上升/下降
int main()
{
n = read(), t = read();
f[2][4][0][0] = 3;
f[2][3][0][0] = 2;
f[2][2][0][0] = 1;
for(int i=3;i<=n;++i)
for(int k=0;k<=t;++k)
for(int j=1;j<=4;++j)
for(int l=1;l<=4;++l) {
if(l < j) f[i][j][k][0] += f[i-1][l][k][0] + f[i-1][l][k][1]; //增加了一个低谷,不改变k
if(l > j) f[i][j][k][1] += f[i-1][l][k][1] + (k>0 ? f[i-1][l][k-1][0] : 0);
// printf("i = %d %d\n",i,f[i][j][k][1]);
}
int ans = 0;
for(int i=1;i<=4;++i)
ans += f[n][i][t][1];
printf("%d",ans);
return 0;
}

[CF] E. Camels的更多相关文章

  1. 跟着xiaoxin巨巨做cf

    cf 385 C. Bear and Prime Numbers 题目大意:有一个数列{xi},每次给出一个询问[l, r],即问 S(l ,r)是l和r之间的素数,f(p)表示数列{xi}中整除p的 ...

  2. CF dp 题(1500-2000难度)

    前言 从后往前刷 update 新增 \(\text{\color{red}{Mark}}\) 标记功能,有一定难度的题标记为 \(\text{\color{red}{红}}\) 色. 题单 (刷过的 ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. 使用struts2的内置标签,采用submit()提交表单时,浏览器报404

    如图 url是没有问题的,结果我将提交方式改为get时,发现有2个参数的name值是一样的,如下图, 解决方法:将name的值修改就OK了.

  2. [CSP-S模拟测试]:骆驼(模拟+构造)

    题目描述 我们都熟悉走马步,现在我们定义一种新的移动方式——骆驼步,它在一个国际棋盘上的移动规则是这样的. 以看出,骆驼步可以向八个方向走动,且不能走出棋盘范围. 现在给出一个$N\times N$的 ...

  3. Python 学习笔记(基础语法 restful 、 Flask 和 Requests)

    input 函数 #!/usr/bin/env python3 name = input("\n\n按下 enter 键后退出.") print(name) print() 在 p ...

  4. 转:KVM使用NAT联网并为VM配置iptables端口转发,kvmiptables

    转载地址:https://www.ilanni.com/?p=7016 在前面的文章中,我们介绍KVM的虚拟机(以下简称VM)都是通过桥接方式进行联网的. 本篇文章我们来介绍KVM的VM通过NAT方式 ...

  5. fedora23然后创建workspace?或者说是panel面板?

    好像在fedora23中 无法再添加工作空间workspace. 系统会自动的在非空工作空间后面再生成一个空的工作空间. 而且 工作空间 好像不只 4个, 可以有很多个. panel面板好像也不能添加 ...

  6. fedora23解决gedit和vim中文乱码的问题

    fedora23解决gedit和vim中文乱码的问题 a, an, the这些不定/定 冠词并不是在所有的名词 前面都要加. 只有在语义上需要时,才加. 名词的单数/复数 前面不加 冠词的 例子多的是 ...

  7. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_04 IO字节流_10_字节输入流一次读取一个字节的原理

    原理解析 创建一个字节流,指向读取文件的第一个字节.  read找jvm,jvm找os.os去读取硬盘.,读取后指正向后移动一位

  8. 前端借助接口获取ip地址

    <script language="javascript" src="http://www.codefans.net/ajaxjs/jquery1.3.2.js&q ...

  9. Spring Boot 之 springcache的使用

    一.开启 springcache,启动类添加 @EnableCaching 注解 @SpringBootApplication @EnableCaching public class Gatherin ...

  10. scrapy爬取booking酒店评论数据

    # scrapy爬取酒店评论数据 -- 代码 here:github地址:https://github.com/760730895/scrapy_Booking--  采用scrapy爬取酒店评论数据 ...