题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4399

题解

毒瘤题 \(9\) 种操作还有支持动态图的连通性

仔细读题 $ c<=7$。

哈只要加边那么动态图就变成了维护集合了。


考虑每一个集合怎们维护。

对于操作 \(1\),直接加入就可以了。

对于操作 \(2\),合并两个集合的时候直接线段树合并。注意判断两个集合是否已经联通。

对于操作 \(3\),我们取出小于 \(x\) 的数的个数,然后把小于 \(x\) 的数全部清空,把个数加到 \(x\) 上去。

对于操作 \(4\),与 \(3\) 同理。

对于操作 \(5\),线段树二分。

对于操作 \(6\),如果直接维护积的话肯定会炸 long long。所以我们可以维护它们取对数以后的值,求和维护即可。比较的时候直接比较对数和就可以了。对数底数的话任选。

对于操作 \(7\),可以直接维护出来。

对于操作 \(8, 9\),动态图


时间复杂度 \(O(m\log max_{val})\)。

注意:此题卡空间!!调整好变量类型和数组大小!!!

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 400000 + 7;
const int INF = 1000000000; int n, m, nod;
int rt[N], fa[N]; struct Node {
int val, lc, rc;
bool tag;
double sum;
} t[N * 17]; inline void pushup(int o) {
if (t[o].tag) return t[o].val = t[o].sum = 0, (void)0;
t[o].val = t[t[o].lc].val + t[t[o].rc].val;
t[o].sum = t[t[o].lc].sum + t[t[o].rc].sum;
}
inline void pushdown(int o) {
if (!t[o].tag) return;
if (t[o].lc) t[t[o].lc].tag = 1, t[t[o].lc].val = 0, t[t[o].lc].sum = 0;
if (t[o].rc) t[t[o].rc].tag = 1, t[t[o].rc].val = 0, t[t[o].rc].sum = 0;
t[o].tag = 0;
}
inline void qadd(int &o, int L, int R, int x, int k) {
if (!k) return;
if (!o) o = ++nod;
if (L == R) return t[o].val += k, t[o].sum += k * log(L), (void)0;
int M = (L + R) >> 1;
pushdown(o);
if (x <= M) qadd(t[o].lc, L, M, x, k);
else qadd(t[o].rc, M + 1, R, x, k);
pushup(o);
}
inline void qset(int o, int L, int R, int l, int r) {
if (!o || !t[o].val || l > r) return;
if (l <= L && R <= r) return t[o].tag = 1, t[o].val = 0, t[o].sum = 0, (void)0;
int M = (L + R) >> 1;
pushdown(o);
if (l <= M) qset(t[o].lc, L, M, l, r);
if (r > M) qset(t[o].rc, M + 1, R, l, r);
pushup(o);
}
inline int qsum(int o, int L, int R, int l, int r) {
if (!o || !t[o].val || l > r) return 0;
if (l <= L && R <= r) return t[o].val;
int M = (L + R) >> 1;
pushdown(o);
if (r <= M) return qsum(t[o].lc, L, M, l, r);
if (l > M) return qsum(t[o].rc, M + 1, R, l, r);
return qsum(t[o].lc, L, M, l, r) + qsum(t[o].rc, M + 1, R, l, r);
}
inline int qval(int o, int L, int R, int k) {
if (L == R) return L;
int M = (L + R) >> 1;
pushdown(o);
if (k <= t[t[o].lc].val) return qval(t[o].lc, L, M, k);
else return qval(t[o].rc, M + 1, R, k - t[t[o].lc].val);
}
inline int merge(int o, int p) {
if (!o || !p) return o ^ p;
pushdown(o), pushdown(p);
t[o].lc = merge(t[o].lc, t[p].lc);
t[o].rc = merge(t[o].rc, t[p].rc);
t[o].val += t[p].val, t[o].sum += t[p].sum;
return o;
}
inline void newnode(int v) { qadd(rt[++n], 1, INF, v, 1), assert(t[rt[n]].val == 1); } inline int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } inline void work() {
while (m--) {
int opt, x, y;
read(opt);
if (opt == 1) {
read(x);
newnode(x);
fa[n] = n;
} else if (opt == 2) {
read(x), read(y);
x = find(x), y = find(y);
if (x == y) continue;
fa[y] = x;
rt[x] = merge(rt[x], rt[y]);
} else if (opt == 3) {
read(x), read(y);
x = find(x);
int cnt = qsum(rt[x], 1, INF, 1, y - 1);
qset(rt[x], 1, INF, 1, y - 1);
qadd(rt[x], 1, INF, y, cnt);
} else if (opt == 4) {
read(x), read(y);
x = find(x);
int cnt = qsum(rt[x], 1, INF, y + 1, INF);
qset(rt[x], 1, INF, y + 1, INF);
qadd(rt[x], 1, INF, y, cnt);
} else if (opt == 5) {
read(x), read(y);
x = find(x);
printf("%d\n", qval(rt[x], 1, INF, y));
} else if (opt == 6) {
read(x), read(y);
x = find(x), y = find(y);
if (t[rt[x]].sum > t[rt[y]].sum) puts("1");
else puts("0");
} else if (opt == 7) {
read(x);
x = find(x);
printf("%d\n", t[rt[x]].val);
}
}
} inline void init() {
read(m);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4399 魔法少女LJJ 线段树合并+线段树二分+并查集的更多相关文章

  1. BZOJ4399魔法少女LJJ——线段树合并+并查集

    题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...

  2. BZOJ4399 魔法少女LJJ【线段树合并】【并查集】

    Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了 LJJ感叹道"这里真是个迷人的绿色世界,空气清新.淡雅 ...

  3. BZOJ4399 魔法少女LJJ(线段树合并)

    注意到只有增加点/合并的操作.这些操作都可以用线段树完成,于是线段树合并一发就好了.注意乘积大小直接比较肯定会炸,取个对数即可.数据中存在重边. #include<iostream> #i ...

  4. 2019.01.16 bzoj4399: 魔法少女LJJ(线段树合并)

    传送门 线段树合并菜题(然而findfindfind函数写错位置调了好久) 支持的操作题目写的很清楚了,然后有一个神奇的限制c≤7c\le7c≤7要注意到不然会去想毒瘤线段树的做法. 思路: 这题只有 ...

  5. bzoj4399 魔法少女LJJ 线段树合并

    只看题面绝对做不出系列.... 注意到\(c \leqslant 7\),因此不会有删边操作(那样例删边干嘛) 注意到\(2, 5\)操作十分的有趣,启示我们拿线段树合并来做 操作\(7\)很好处理 ...

  6. BZOJ4399 : 魔法少女LJJ

    将所有权值离散化,建立权值线段树,维护区间内数字个数以及对数的和,用于比较乘积大小. 对于每个连通块维护一棵权值线段树,合并时用线段树合并. 对于操作3和4,暴力删除所有不合法节点,然后一并修改后插入 ...

  7. 【BZOJ4399】魔法少女LJJ 线段树合并

    [BZOJ4399]魔法少女LJJ Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的 ...

  8. 【bzoj4399】魔法少女LJJ 并查集+权值线段树合并

    题目描述 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着醉人的奶浆味: ...

  9. BZOJ 4399: 魔法少女LJJ 线段树合并 + 对数

    Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的绿色世界,空气清新.淡雅,到处散发着 ...

随机推荐

  1. springMVC解决跨域

    原文:https://www.cnblogs.com/shihaiming/p/9544060.html 介绍:   跨站 HTTP 请求(Cross-site HTTP request)是指发起请求 ...

  2. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第4节 ArrayList集合_16-ArrayList练习一_存储随机数

    循环6次就是6.fori 循环子在外部+1就是得到的1到33的数字 list.fori遍历集合 自动生for循环的代码

  3. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第4节 ArrayList集合_17-ArrayList练习二_存储自定义

    分析题目和解题思路 先来新建学生类.定义两个成员变量,后面进行代码的生成 遍历集合

  4. HslControls

    HslControls控件库的使用demo,HslControls是一个工业物联网的控件库,基于C#开发,配套HslCommunication组件可以实现工业上位机软件的快速开发,支持常用的工业图形化 ...

  5. 编程字体Source Code Pro 免费下载

    对于程序员来说,好的字体应该满足的基本条件: 字母和数字易于分辨,如: 英文字母o 和 阿拉伯数字 0 ,或者 英文字母 l 和 阿拉伯数字 1 ,两个单引号 '' 和双引号 ”. 字体等宽,保持对齐 ...

  6. mysql5.7插入数据报错 Incorrect integer value

    mysql5.7插入字符串为空的时候取出来的值设置为null

  7. [10期]浅谈SSRF安全漏洞

    引子:SSRF 服务端请求伪造攻击 很多web应用都提供从其他服务器上获取数据的功能.使用用户指定的URL,web应用可以从其他服务器获取图片,下载文件,读取文件内容等. 这个功能被恶意使用的话,可以 ...

  8. sql 语句 的一些优化小总结

    1.用exists 代替 in 原理:exists 是存在一个即返回一个 而in是做全盘扫描得出所有条件内的数据 (高效) and exists (select 'x' from Person whe ...

  9. Spring MVC-学习笔记(5)spring MVC的文件上传、下载、拦截器

    1.文件上传.      spring MVC为文件上传提供了直接的支持,这种支持是即插即用的MultipartResolver(多部分解析器)实现的.spring MVC使用Apache Commo ...

  10. hive Hbase sql

    Hive和HBase的区别 ​ hive是为了简化编写MapReduce程序而生的,使用MapReduce做过数据分析的人都知道,很多分析程序除业务逻辑不同外,程序流程基本一样.在这种情况下,就需要h ...