任意角度的场景文本检测
论文思路总结
共同点:重新添加分支的创新更突出
场景文本检测
基于分割的检测方法
spcnet(mask_rcnn+tcm+rescore)
psenet(渐进扩展)
mask text spottor(新加分割分支)
craft
incepText

基于回归的检测方法:
r2cnn(类别分支,水平分支,倾斜分支)
rrpn(旋转rpn)
textbox(ssd)
textbox++
sstd(tcm改进前身)
rtn
ctpn(微分)

基于分割和回归的混合方法:
spcnet
利用mask_rcnn来进行实例分割,通过新模块tcm(获取全局语义分割图)以及rescore来提升准确率,实例分割映射在全局语义分割打分
pixel-anchor(deeplabv3+ssd):
分割的部分检测中大目标,ssd检测小目标
east(deeplabv3)
af-rpn
位于文本核心区域中的每个滑动点,直接预测从它到文本边框顶点的偏移量
(采用ohem)

FPN官方给的训练时候是前面共享参数的,对结果影响不大,说是特征金字塔使得不同层学到了相同层次的语义特征
FPN在得到多层金字塔模块的proposals结果之后,放到一块做nms处理
FPN每层金字塔模块的scale都是一样的,因为对应到不同的feature map上面刚好检测不同大小的物体

***********************论文名字后边括号内容为亮点部分********************

hybrid:---------------------------------------------------------------
1.af-rpn(af)
anchor-free
直接预测中心点到box的四个顶点偏移量,
避免了这种情况(to achieve high recall, anchors use various scales and shapes should be designed to cover the scale and shape variabilities of objects )
scale-friendly
FPN对大中小三种尺度的目标分开检测(实现细节与fpn有不同)

2.inceptext(inceptext)
整体就是 fpn+inception_module+deformable_conv+deformable PSROI pooling
inception-text
设计类似inception中(1*1,3*3,5*5)三种卷积核对大中小三种不同尺度的目标进行检测,
也加入deformable卷积来调整感受野,把检测聚集到文字上面,不容易受方向限制;还有 two fused feature maps 增加多尺度信息。
deformable psroi pooling
(把检测聚集到文字上面,不容易受方向限制)
加入offset集中检测文字部分的信息,tend to learn the context surrounding the text
Each image is randomly cropped and scaled to have short edge of{640,800,960,1120}.
The anchor scales are {2,4,8,16}, and ratios are {0.2,0.5,2,5}.

3.rtn(无亮点)
一个多尺度的特征,加上ctpn竖直框,加上只有回归的预测
hierarchical convolutional
获得更强的语义特征,融合了resnet的模块4和模块5
vertical proposal mechanism
用ctpn获取竖直框,目的是去掉proposal的分类

regression:---------------------------------------------------------------
1.ctpn
detecting text in fine-scale proposals
generate vertical proposals
recurrent connectionist text proposals
连接vertical proposals
side-refinement
针对左右边界的anchors预测文本行的边界进行调整
2.textboxs
采用ssd来做std(multi-scale)
3.textboxs++
可以借鉴数据增强的方式 random crop
4.r2cnn(inclined box)
three ROIPoolings use different pooled sizes
anchor scales(4,8,16,32)
axis-aligned 和 inclined box一起预测且是包含关系
incline NMS
compute convolutional feature maps on an image pyramid(非主要)
augment ICDAR 2015
We rotate our image at the following angles (-90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90).
借鉴r2cnn的 ablation experiment
5.rrpn
rrpn
r-anchors(54,3*3*6),generate inclined proposals(representation,x,y,h,w,θ)
RROI pooling
skew NMS
image rotation strategy during data augmentation

segmentation ------------------------------------------------------

Scene Text Detection(场景文本检测)论文思路总结的更多相关文章

  1. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  2. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  3. 论文速读(Chuhui Xue——【arxiv2019】MSR_Multi-Scale Shape Regression for Scene Text Detection)

    Chuhui Xue--[arxiv2019]MSR_Multi-Scale Shape Regression for Scene Text Detection 论文 Chuhui Xue--[arx ...

  4. 【论文速读】XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection

    XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection 作者和代码 caffe代码 关键词 ...

  5. 【论文速读】Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping

    Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrappi ...

  6. 论文阅读笔记三:R2CNN:Rotational Region CNN for Orientation Robust Scene Text Detection(CVPR2017)

    进行文本的检测的学习,开始使用的是ctpn网络,由于ctpn只能检测水平的文字,而对场景图片中倾斜的文本无法进行很好的检测,故将网络换为RRCNN(全称如题).小白一枚,这里就将RRCNN的论文拿来拜 ...

  7. Learning Markov Clustering Networks for Scene Text Detection

    Learning Markov Clustering Networks for Scene Text Detection 论文下载:https://arxiv.org/pdf/1805.08365v1 ...

  8. XiangBai——【CVPR2018】Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

    XiangBai——[CVPR2018]Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentat ...

  9. 【OCR技术系列之五】自然场景文本检测技术综述(CTPN, SegLink, EAST)

    文字识别分为两个具体步骤:文字的检测和文字的识别,两者缺一不可,尤其是文字检测,是识别的前提条件,若文字都找不到,那何谈文字识别.今天我们首先来谈一下当今流行的文字检测技术有哪些. 文本检测不是一件简 ...

随机推荐

  1. Linux下安装Tomcat(2)

    Tomcat是一个免费的开源的Serlvet容器,它是Apache基金会的Jakarta项目中的一个核心项目,由Apache,Sun和 其它一些公司及个人共同开发而成.由于有了Sun的参与和支持,最新 ...

  2. 心形陀螺案例css3

    <!DOCTYPE html><html lang="zh-cn"><head> <meta charset="UTF-8&qu ...

  3. Docker容器日常操作命令

    在Docker的运用中,从下载镜像,启动容器,在容器中输入命令来运行程序,这些命令都是手工一条条往里输入的,无法重复利用,而且效率很低.所以就需要一 种文件或脚本,我们把想执行的操作以命令的方式写入其 ...

  4. Java控制台输入字符串及字符串比较

    需求描述:茵茵很喜欢研究车牌号码,从车牌号码上可以看出号码注册的早晚,据研究发现,车牌号码是按字典序发放的,现在她收集了很多车牌号码,请你设计程序帮她判断注册较早的号码.车牌号码由5个字母或数字组成. ...

  5. P1022计算器の改良

    传送 这个题让你通过自己的努力,来写一个可以解一元一次方程的计算题(麻麻再也不用担心我计算错了qwq) 我们先学习一下一元一次方程的解法 step1:移项.把带有未知数的项移到方程的一边,把常数项移到 ...

  6. CodeIgniter 技巧 - 通过 Composer 安装 CodeIgniter 框架并安装依赖包

    PHP 项目中,通过 Composer 来管理各种依赖包,类似 Java 中的 Maven,或 Node 中的 npm.CodeIgniter 框架要想通过 Composer 自动加载包也很简单,步骤 ...

  7. Altium Designer chapter3总结

    绘制电路原理图中需要注意的如下: (1)元件库的操作:元件库的加载和卸载.查找元件. (2)元件操作: 1.放置元件(元件库中,place part,快捷键)中place part中的history可 ...

  8. (转载) linux下文件权限设置中的数字表示

    chmod ABC file 其中A.B.C各为一个数字,分别表示User.Group.及Other的权限. A.B.C这三个数字如果各自转换成由“0”.“1”组成的二进制数,则二进制数的每一位分别代 ...

  9. Python科学计算三维可视化(整理完结)

    中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...

  10. 监控服务器的脚本log_agent

    监控服务器脚本: 将恶意攻击IP地址加入黑名单 1.分割日志 使用os.system 执行操作系统命令,使用重定向来分割日志 2.获取访问ip 读日志文件,获取访问ip记录,使用字符串.split来获 ...