任意角度的场景文本检测
论文思路总结
共同点:重新添加分支的创新更突出
场景文本检测
基于分割的检测方法
spcnet(mask_rcnn+tcm+rescore)
psenet(渐进扩展)
mask text spottor(新加分割分支)
craft
incepText

基于回归的检测方法:
r2cnn(类别分支,水平分支,倾斜分支)
rrpn(旋转rpn)
textbox(ssd)
textbox++
sstd(tcm改进前身)
rtn
ctpn(微分)

基于分割和回归的混合方法:
spcnet
利用mask_rcnn来进行实例分割,通过新模块tcm(获取全局语义分割图)以及rescore来提升准确率,实例分割映射在全局语义分割打分
pixel-anchor(deeplabv3+ssd):
分割的部分检测中大目标,ssd检测小目标
east(deeplabv3)
af-rpn
位于文本核心区域中的每个滑动点,直接预测从它到文本边框顶点的偏移量
(采用ohem)

FPN官方给的训练时候是前面共享参数的,对结果影响不大,说是特征金字塔使得不同层学到了相同层次的语义特征
FPN在得到多层金字塔模块的proposals结果之后,放到一块做nms处理
FPN每层金字塔模块的scale都是一样的,因为对应到不同的feature map上面刚好检测不同大小的物体

***********************论文名字后边括号内容为亮点部分********************

hybrid:---------------------------------------------------------------
1.af-rpn(af)
anchor-free
直接预测中心点到box的四个顶点偏移量,
避免了这种情况(to achieve high recall, anchors use various scales and shapes should be designed to cover the scale and shape variabilities of objects )
scale-friendly
FPN对大中小三种尺度的目标分开检测(实现细节与fpn有不同)

2.inceptext(inceptext)
整体就是 fpn+inception_module+deformable_conv+deformable PSROI pooling
inception-text
设计类似inception中(1*1,3*3,5*5)三种卷积核对大中小三种不同尺度的目标进行检测,
也加入deformable卷积来调整感受野,把检测聚集到文字上面,不容易受方向限制;还有 two fused feature maps 增加多尺度信息。
deformable psroi pooling
(把检测聚集到文字上面,不容易受方向限制)
加入offset集中检测文字部分的信息,tend to learn the context surrounding the text
Each image is randomly cropped and scaled to have short edge of{640,800,960,1120}.
The anchor scales are {2,4,8,16}, and ratios are {0.2,0.5,2,5}.

3.rtn(无亮点)
一个多尺度的特征,加上ctpn竖直框,加上只有回归的预测
hierarchical convolutional
获得更强的语义特征,融合了resnet的模块4和模块5
vertical proposal mechanism
用ctpn获取竖直框,目的是去掉proposal的分类

regression:---------------------------------------------------------------
1.ctpn
detecting text in fine-scale proposals
generate vertical proposals
recurrent connectionist text proposals
连接vertical proposals
side-refinement
针对左右边界的anchors预测文本行的边界进行调整
2.textboxs
采用ssd来做std(multi-scale)
3.textboxs++
可以借鉴数据增强的方式 random crop
4.r2cnn(inclined box)
three ROIPoolings use different pooled sizes
anchor scales(4,8,16,32)
axis-aligned 和 inclined box一起预测且是包含关系
incline NMS
compute convolutional feature maps on an image pyramid(非主要)
augment ICDAR 2015
We rotate our image at the following angles (-90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90).
借鉴r2cnn的 ablation experiment
5.rrpn
rrpn
r-anchors(54,3*3*6),generate inclined proposals(representation,x,y,h,w,θ)
RROI pooling
skew NMS
image rotation strategy during data augmentation

segmentation ------------------------------------------------------

Scene Text Detection(场景文本检测)论文思路总结的更多相关文章

  1. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  2. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  3. 论文速读(Chuhui Xue——【arxiv2019】MSR_Multi-Scale Shape Regression for Scene Text Detection)

    Chuhui Xue--[arxiv2019]MSR_Multi-Scale Shape Regression for Scene Text Detection 论文 Chuhui Xue--[arx ...

  4. 【论文速读】XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection

    XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection 作者和代码 caffe代码 关键词 ...

  5. 【论文速读】Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrapping

    Chuhui Xue_ECCV2018_Accurate Scene Text Detection through Border Semantics Awareness and Bootstrappi ...

  6. 论文阅读笔记三:R2CNN:Rotational Region CNN for Orientation Robust Scene Text Detection(CVPR2017)

    进行文本的检测的学习,开始使用的是ctpn网络,由于ctpn只能检测水平的文字,而对场景图片中倾斜的文本无法进行很好的检测,故将网络换为RRCNN(全称如题).小白一枚,这里就将RRCNN的论文拿来拜 ...

  7. Learning Markov Clustering Networks for Scene Text Detection

    Learning Markov Clustering Networks for Scene Text Detection 论文下载:https://arxiv.org/pdf/1805.08365v1 ...

  8. XiangBai——【CVPR2018】Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

    XiangBai——[CVPR2018]Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentat ...

  9. 【OCR技术系列之五】自然场景文本检测技术综述(CTPN, SegLink, EAST)

    文字识别分为两个具体步骤:文字的检测和文字的识别,两者缺一不可,尤其是文字检测,是识别的前提条件,若文字都找不到,那何谈文字识别.今天我们首先来谈一下当今流行的文字检测技术有哪些. 文本检测不是一件简 ...

随机推荐

  1. [USACO17DEC]Barn Painting (树形$dp$)

    题目链接 Solution 比较简单的树形 \(dp\) . \(f[i][j]\) 代表 \(i\) 为根的子树 ,\(i\) 涂 \(j\) 号颜色的方案数. 转移很显然 : \[f[i][1]= ...

  2. qt qsplashscreen 启动画面 延时

    intdelayTime=3; QElapsedTimer timer; timer.start(); while(timer.elapsed()<(delayTime*1000)) { app ...

  3. django正常运行确报错的解决方法

    django正常运行却报错的处理方法 出处 : https://www.infvie.com/ops-notes/django-normal-operation-error 报错一:self._soc ...

  4. (线性基)Operation

    http://acm.hdu.edu.cn/showproblem.php?pid=6579 线性基https://blog.csdn.net/a_forever_dream/article/deta ...

  5. http预请求 options

    问题 使用axios请求接口时,出现了发出两次请求的情况:一个是请求OPTIONS,一个是正常的POST请求:查资料发现与跨域请求有关. 概念 MDN中有提到: 出于安全原因,浏览器限制从脚本内发起的 ...

  6. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...

  7. EhCache缓存框架的使用

    EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. 我们使用EhCache缓存框架主要是为了判断重复Url,每次爬取一个网 ...

  8. 利用 Skywalking 搭建 APM(应用性能管理)— 安装与配置

    1.什么是 Skywalking Skywalking 是一个APM系统,即应用性能监控系统,为微服务架构和云原生架构系统设计.它通过探针自动收集所需的指标,并进行分布式追踪.通过这些调用链路以及指标 ...

  9. DHCP原理

    一台主机的ip地址可用通过两种方式来设置.1 手动输入:2 自动向DHCP服务器获取.手动输入会出现错误,比如输入一个已经分配的ip地址,当内网机器只有几台,十几台还可以忍受,如果是几百台呢,不可能一 ...

  10. day25—JavaScript实现文件拖拽上传案例实践

    转行学开发,代码100天——2018-04-10 今天记录一个利用JavaScript实现文件拖拽上传到浏览器,后天将文件打开的小案例. 基本功能:1点击添加文件 2 文件拖拽添加 html: < ...