题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4165

题解

大概多路归并是最很重要的知识点了吧,近几年考察也挺多的(虽然都是作为签到题的)。

看到题目要求第 \(K\) 小矩阵,基本上可以想到用堆维护的 \(K\) 路归并。

然后我们考虑每一路是以 \((x_2, y_2)\) 为右下角的矩形的权值。那么初始的矩形的左上角应该是 \((x_2 - Mina, y_2 - Minb)\)。

于是我们用一个堆来维护这样的每一路。扩展每一路的话,因为把矩形的左边界或者上边界扩展一个单位以后权值肯定单调升,所以可以直接扩展一下左边界和上边界这两个矩形。但是这样可能会有重复的,所以拿一个 map 来判重一下。


这样的时间复杂度是 \(O(k\log nm)\)。

#include<bits/stdc++.h>
#include<tr1/unordered_set> #define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 1000 + 7; int n, m, mina, minb, k;
int a[N][N];
ll s[N][N]; inline ll gsum(int x1, int y1, int x2, int y2) { return s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]; } struct Matrix {
int x1, y1, x2, y2;
inline Matrix() {}
inline Matrix(const int &x1, const int &y1, const int &x2, const int &y2) : x1(x1), y1(y1), x2(x2), y2(y2) {}
inline bool operator < (const Matrix &b) const { return gsum(x1, y1, x2, y2) > gsum(b.x1, b.y1, b.x2, b.y2); }
};
std::priority_queue<Matrix> q; std::tr1::unordered_set<ll> mp;
inline void set_mp(int x1, int y1, int x2, int y2) {
ll v = (((((ll)x1 * m) + y1) * n + x2) * m + y2);
mp.insert(v);
}
inline bool get_mp(int x1, int y1, int x2, int y2) {
ll v = (((((ll)x1 * m) + y1) * n + x2) * m + y2);
return mp.count(v);
} inline void work() {
for (int i = mina; i <= n; ++i)
for (int j = minb; j <= m; ++j) q.push(Matrix(i - mina + 1, j - minb + 1, i, j)), set_mp(i - mina + 1, j - minb + 1, i, j);
while (k--) {
Matrix t = q.top();
q.pop();
if (!k) return (void)printf("%lld\n", gsum(t.x1, t.y1, t.x2, t.y2));
if(t.x1 > 1 && !get_mp(t.x1 - 1, t.y1, t.x2, t.y2)) set_mp(t.x1 - 1, t.y1, t.x2, t.y2), q.push(Matrix(t.x1 - 1, t.y1, t.x2, t.y2));
if(t.y1 > 1 && !get_mp(t.x1, t.y1 - 1, t.x2, t.y2)) set_mp(t.x1, t.y1 - 1, t.x2, t.y2), q.push(Matrix(t.x1, t.y1 - 1, t.x2, t.y2));
}
} inline void init() {
read(n), read(m), read(mina), read(minb), read(k);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) read(a[i][j]), s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4165 矩阵 堆维护多路归并的更多相关文章

  1. bzoj4165: 矩阵(堆+hash)

    求第k大用堆维护最值并出堆的时候扩展的经典题... 因为只有正数,所以一个矩阵的权值肯定比它的任意子矩阵的权值大,那么一开始把所有满足条件的最小矩阵加进堆里,弹出的时候上下左右扩展一行加进堆,用has ...

  2. 【bzoj4165】矩阵 堆+STL-map

    题目描述 定义和谐矩阵为长不小于 Mina 且宽不小于 Minb 的矩阵,矩阵的权值为整个矩阵内所有数的和.给定一个长为 N,宽为 M 的矩阵 A,求它的所有和谐子矩阵中权值第 K 小的矩阵,并输出它 ...

  3. UVA 11997 K Smallest Sums (多路归并)

    从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...

  4. bzoj4165: 矩阵

    Description 定义和谐矩阵为长不小于 Mina 且宽不小于 Minb 的矩阵,矩阵的权值为整个矩阵内所有数的和.给定一个长为 N ,宽为 M 的矩阵 A,求它的所有和谐子矩阵中权值第 K 小 ...

  5. UVA11997求前k个和,多路归并问题

    题意:      给你一个二维矩阵,n*n的,每次从每一行中拿出来一个,然后加起来组成一个和,一共可以得到n^n个和,要求求出这n^n个和中最小的那n个和. 思路:      多路归并问题,先说下多路 ...

  6. uva 11997 K Smallest Sums 优先队列处理多路归并问题

    题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...

  7. [UOJ#268]. 【清华集训2016】数据交互[动态dp+可删堆维护最长链]

    题意 给出 \(n\) 个点的树,每个时刻可能出现一条路径 \(A_i\) 或者之前出现的某条路径 \(A_i\) 消失,每条路径有一个权值,求出在每个时刻过后能够找到的权值最大的路径(指所有和该路径 ...

  8. 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp

    题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...

  9. POJ 2010 Moo University - Financial Aid(堆维护滑窗kth,二分)

    按照score排序,贪心,从左到右用堆维护并且记录前面的最小N/2个花费之和. 然后从右向左枚举中位数,维护N/2个数之和加上并判断是否满足条件.(stl的队列没有clear(),只能一个一个pop. ...

随机推荐

  1. 一个蒟蒻的解题过程记录——洛谷P1003 铺地毯

    这到题算是我“火线回归”后码的第一道题,病好了心情不错,发篇博客分享一下 目录: ·题目描述 ·题目分析 ·解题思路 ·代码实现 ·总结 ·题目描述: 为了准备一场特殊的颁奖典礼,组织者在会场的一片矩 ...

  2. 思科端口聚合的命令是channel-group

    锐捷设备的端口聚合命令是: int range f0/1-2 port-group 1 --------------------- == 思科设备的端口聚合 是: int range f0/1-2 c ...

  3. 初步理解JS的事件机制

    一.事件流(捕获,冒泡)   事件流:指从页面中接收事件的顺序,有冒泡流和捕获流. 当页面中发生某种事件(比如鼠标点击,鼠标滑过等)时,毫无疑问子元素和父元素都会接收到该事件,可具体顺序是怎样的呢?冒 ...

  4. handsonetable+vue 表格在线编辑

    <template> <div> <div id="example-container" class="wrapper"> ...

  5. Oracle.DataAccess.Client.OracleCommand”的类型初始值设定项引发异常

    Oracle.ManagedDataAccess.dll 连接Oracle数据库不需要安装客户端 最开始,连接Oracle 数据是需要安装客户端的,ado.net 后来由于微软未来不再支持 Syste ...

  6. 阶段3 1.Mybatis_09.Mybatis的多表操作_5 完成user的一对多查询操作

    定义List<Account> accounts,生成getter和setter 复制AccountTest类改名UserTest类 修改测试类 还没封装所以Account的list都是n ...

  7. robotframework json解析

    用robotframework做接口测试,现在用的最多的就是json格式的数据,刚开始接触会感觉一脸懵逼,不知道怎么去取里面的值.在这里简单介绍一下,其实本身json取值不会太难,只要理解层次关系,一 ...

  8. UnityEventSystem

    能够处理各种UI事件: IPointerEnterHandler:当指针进入 void OnPointerEnter(PointerEventData eventData); IPointerExit ...

  9. Delphi Tokyo 10.2.3发布了

    Delphi Tokyo 10.2.3发布了 http://blog.sina.com.cn/s/blog_44fa172f0102wwwg.html (2018-03-14 07:51:32) 转载 ...

  10. oracle data guard --理论知识回顾02

    继上一篇 管理影响物理standby的事件 1 创建表空间或数据文件初始化参数standby_file_management用来控制是否自动将primary数据库增加表空间或数据文件的改动,传播到st ...