本文介绍了Llama2模型集成LangChain框架的具体实现,这样可更方便地基于Llama2开发文档检索、问答机器人和智能体应用等。

1.调用Llama2类

  针对LangChain[1]框架封装的Llama2 LLM类见examples/llama2_for_langchain.py,调用代码如下所示:

from llama2_for_langchain import Llama2
# 这里以调用4bit量化压缩的Llama2-Chinese参数FlagAlpha/Llama2-Chinese-13b-Chat-4bit为例
llm = Llama2(model_name_or_path='FlagAlpha/Llama2-Chinese-13b-Chat-4bit', bit4=True)
while True:
    human_input = input("Human: ")
    response = llm(human_input)
    print(f"Llama2: {response}")

2.Llama2 LLM类具体实现

  主要是def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str函数实现。LangChain八股文也不难实现,如下所示:

from langchain.llms.base import LLM
from typing import Dict, List, Any, Optional
import torch,sys,os
from transformers import AutoTokenizer

class Llama2(LLM): # LLM是一个抽象类,需要实现_call方法
    max_token: int = 2048     # 最大token数
    temperature: float = 0.1  # 生成温度
    top_p: float = 0.95       # 生成概率
    tokenizer: Any            # 分词器
    model: Any                # 模型
    
    def __init__(self, model_name_or_path, bit4=True):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,use_fast=False)
        self.tokenizer.pad_token = self.tokenizer.eos_token
        if bit4==False: # 32bit
            from transformers import AutoModelForCausalLM
            self.model = AutoModelForCausalLM.from_pretrained(model_name_or_path,device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)
            self.model.eval()
        else: # 4bit
            from auto_gptq import AutoGPTQForCausalLM
            self.model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,low_cpu_mem_usage=True, device="cuda:0", use_triton=False,inject_fused_attention=False,inject_fused_mlp=False)
            
        if torch.__version__ >= "2" and sys.platform != "win32":
            self.model = torch.compile(self.model)
            
    @property # @property装饰器将方法转换为属性
    def _llm_type(self) -> str:
        return "Llama2"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        print('prompt:',prompt)
        input_ids = self.tokenizer(prompt, return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')
        generate_input = {
            "input_ids":input_ids,
            "max_new_tokens":1024,
            "do_sample":True,
            "top_k":50,
            "top_p":self.top_p,
            "temperature":self.temperature,
            "repetition_penalty":1.2,
            "eos_token_id":self.tokenizer.eos_token_id,
            "bos_token_id":self.tokenizer.bos_token_id,
            "pad_token_id":self.tokenizer.pad_token_id
        }
        generate_ids = self.model.generate(**generate_input)
        generate_ids = [item[len(input_ids[0]):-1] for  item in generate_ids]
        result_message = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        return result_message # 返回生成的文本

参考文献:

[1]https://github.com/FlagAlpha/Llama2-Chinese/blob/main/examples/llama2_for_langchain.py

[2]https://github.com/langchain-ai/langchain

Llama2-Chinese项目:7-外延能力LangChain集成的更多相关文章

  1. GitHub项目加入Travis-CI的自动集成

    Travis-CI是为github量身打造的自动集成环境,如果我们的项目托管在github上,可以十分方便的使用Travis-CI做自动集成. 使用Travis-CI十分的简单,首先打开Travis- ...

  2. 为GitHub项目加入Travis-CI的自动集成

    可以参考这篇文档进行集成:https://docs.travis-ci.com/user/languages/csharp/,只需要三步: 1.创建.travis.yml 2.写入标签 3.试着提交你 ...

  3. Spring Boot 项目实战(五)集成 Dubbo

    一.前言 上篇介绍了 Redis 的集成过程,可用于解决热点数据访问的性能问题.随着业务复杂度的提高,单体应用越来越庞大,就好比一个类的代码行数越来越多,分而治之,切成多个类应该是更好的解决方法,所以 ...

  4. JavaWeb项目自动部署,持续集成

    来公司以后,学会两种JavaWeb项目,自动部署. 1.jenkins持续集成.自动化部署 (1)安装jenkins----------推荐nginx跳转方式,以域名方式 (2)nginx采用不同域名 ...

  5. Spring Boot 项目实战(六)集成 Apollo

    一.前言 上篇介绍了 Spring Boot 集成 Dubbo,使我们的系统打下了分布式的基础.随着程序功能的日益复杂,程序的配置日益增多:各种功能开关.参数配置.服务器地址等:对程序配置的期望值也越 ...

  6. Spring Boot 项目实战(四)集成 Redis

    一.前言 上篇介绍了接口文档工具 Swagger 及项目监控工具 JavaMelody 的集成过程,使项目更加健壮.在 JAVA Web 项目某些场景中,我们需要用缓存解决如热点数据访问的性能问题,业 ...

  7. Spring Boot 项目实战(三)集成 Swagger 及 JavaMelody

    一.前言 上篇介绍了 Logback 的集成过程,总体已经达到了基本可用的项目结构.本篇主要介绍两个常用工具,接口文档工具 Swagger .项目监控工具 JavaMelody 的集成步骤. 二.Sw ...

  8. Spring Boot 项目实战(二)集成 Logback

    一.前言 上篇介绍了 Spring Boot Maven 多模块项目的搭建方法以及 MyBatis 的集成.通常在调试接口或者排查问题时我们主要借助于日志,一个设计合理的日志文件配置能大大降低我们的排 ...

  9. [日常] SinaMail项目和技术能力总结

    一.企邮WEBMAIL项目1.完成手机绑定二次验证,绑定手机提升账户的安全性2.登陆验证接口改造,增加一系列登陆限制,增强webmail的系统可靠性3.增加外发限制功能,及时控制用户发信行为,有利于企 ...

  10. Jekens 配置多项目SCM GitLab+Jenkins持续集成环境

    参考: 搭建GitLab+Jenkins持续集成环境图文教程 https://blog.csdn.net/ruangong1203/article/details/73065410 Jenkins中配 ...

随机推荐

  1. 成本阶问题:财务模块axcr004合计金额检核表第18行合计金额与明细差异过大问题处理?

    财务模块axcr004合计金额检核表第18行合计金额与明细差异过大问题处理? 可能原因:生产开立工单时元件未建在生产料件BOM明细中,导致成本阶没有算到,需要手动更改成本阶. 公式: 处理办法:修改成 ...

  2. CSE 2023 混合年度回声周末

    CSE 2023 混合年度回声周末(2023 年 4 月 13 日至 15 日)25 周年银周年纪念版 近 900 名参与者参加.又是成功的伟大一年.明年 2024 年 4 月在多伦多见.敬请关注全年 ...

  3. VS Code SSH

    VS Code SSH 连接需要下载 VS Code Server,这是因为 VS Code Server 是在远程服务器上运行的,而不是在本地计算机上运行的.每次连接到不同的远程服务器时,都需要下载 ...

  4. css的认知与样式

      目录 1. 介绍css 2. CSS语法 3. CSS注释 4. CSS中的颜色值 5. CSS长度单位 6. html引入CSS的三种方法 6.1 行内样式(内联样式) 6.2   内嵌样式 6 ...

  5. 【matplotlib 实战】--热力图

    热力图,是一种通过对色块着色来显示数据的统计图表.它通过使用颜色编码来表示数据的值,并在二维平面上呈现出来.热力图通常用于显示大量数据点的密度.热点区域和趋势. 绘图时,一般较大的值由较深的颜色表示, ...

  6. umich cv-5-1 神经网络训练1

    这节课中介绍了训练神经网络的第一部分,包括激活函数的选择,权重初始化,数据预处理以及正则化方法 训练神经网络1 激活函数 数据预处理 权重初始化 正则化方法 激活函数 这部分主要讨论我们之前提到的几种 ...

  7. Educational Codeforces Round 118 (Rated for Div. 2) D. MEX Sequences

    \(DP\)真的太难了啊!! 首先考虑到\(f(i, s)\)表示,从前\(i\)个数中选,最后一个数为\(a_i\),且\(MEX(a_1,....,a_i) = \left\{ \begin{al ...

  8. Docker安装与教程-Centos7(一)

    复现漏洞时,经常要复现环境,VMware还原太过麻烦,所以学习docker的基本操作也是必要的 Docker三要素-镜像.容器.仓库 操作系统:Centos7 官方教程文档 1.Docker的安装与卸 ...

  9. css面试题随笔

    之前在前端群有个汉纸聊到他面试别人时问到:margin塌陷和margin合并问题如何解决? 然后我自己也懵逼了哈哈,因为只是遇到过并不知道这叫塌陷.合并哈哈哈················那我们一起 ...

  10. 金蝶云星空与泛微OA集成的方案落地与实践

    打破信息孤岛,泛微OA集成的方案落地与实践 在现代企业内部,不同类型的业务系统和泛微OA平台层出不穷.企业需要找到一种高效的方法来整合和协同这些多样化的系统,同时将它们与泛微OA平台融合,以实现资源整 ...