DENOISING DIFFUSION IMPLICIT MODELS (DDIM)

从DDPM中我们知道,其扩散过程(前向过程、或加噪过程)被定义为一个马尔可夫过程,其去噪过程(也有叫逆向过程)也是一个马尔可夫过程。对马尔可夫假设的依赖,导致重建每一步都需要依赖上一步的状态,所以推理需要较多的步长。

\[q(x_t|x_{t-1}) := \mathcal{N}(x_t;\sqrt{\alpha_t}x_{t-1},{1-\alpha_t}I) \\
q(x_t|x_{0}) := \mathcal{N}(x_t;\sqrt{\bar{\alpha}_t}x_{0},{(1-\bar{\alpha}_t})I)
\]
\[\begin{align*}
q(x_{t-1}|x_t,x_0)
&\overset{Bayes}{=} \dfrac{q(x_t|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_t|x_0)} \\
&\overset{Markov}{=} \dfrac{q(x_t|x_{t-1})q(x_{t-1}|x_0)}{q(x_t|x_0)}
\end{align*}
\]

DDPM中对于其逆向分布的建模使用马尔可夫假设,这样做的目的是将式子中的未知项 \(q(x_t|x_{t-1},x_0)\),转化成了已知项 \(q(x_t|x_{t-1})\),最后求出 \(q(x_{t-1}|x_t,x_0)\) 的分布也是一个高斯分布 \(\mathcal{N}(x_{t-1};\mu_q(x_t,x_0),\Sigma_q(t))\)。

从DDPM的结论出发,我们不妨直接假设 \(q(x_{t-1}|x_t,x_0)\) 的分布为高斯分布,在不使用马尔可夫假设的情况下,尝试求解 \(q(x_{t-1}|x_t,x_0)\) 。

由 DDPM 中 \(q(x_{t-1}|x_t,x_0)\) 的分布 \(\mathcal{N}(x_{t-1};\mu_q(x_t,x_0),\Sigma_q(t))\) 可知,均值为 一个关于 \(x_t,x_0\) 的函数,方差为一个关于 \(t\) 的函数。

我们可以把 \(q(x_{t-1}|x_t,x_0)\) 设计成如下分布:

\[q(x_{t-1}|x_t,x_0) := \mathcal{N}(x_{t-1}; a x_0 + b x_t,\sigma_t^2 I)
\]

这样,只要求解出 \(a,b,\sigma_t\) 这三个待定系数,即可确定 \(q(x_{t-1}|x_t,x_0)\) 的分布。

重参数化 \(q(x_{t-1}|x_t,x_0)\) :

\[x_{t-1}=a x_0 + b x_t + \sigma_t \varepsilon^{\prime}_{t-1}
\]

假设训练模型时输入噪声图片的加噪参数与DDPM完全一致

由 \(q(x_t|x_{0}) := \mathcal{N}(x_t;\sqrt{\bar{\alpha}_t}x_{0},(1-\bar{\alpha}_t)I)\) :

\[x_t=\sqrt{\bar{\alpha}_t}x_{0}+\sqrt{1-\bar{\alpha}_t}\varepsilon^{\prime}_{t}
\]

代入 \(x_t\) 有:

\[\begin{align*}
x_{t-1} &=a x_0 + b(\sqrt{\bar{\alpha}_t}x_{0}+\sqrt{1-\bar{\alpha}_t}\varepsilon^{\prime}_{t}) + \sigma_t \varepsilon^{\prime}_{t-1} \\
&= (a + b\sqrt{\bar{\alpha}_t}) x_0 + (b\sqrt{1-\bar{\alpha}_t}\varepsilon^{\prime}_{t} + \sigma_t \varepsilon^{\prime}_{t-1}) \\
&= (a + b\sqrt{\bar{\alpha}_t}) x_0 + (\sqrt{b^2(1-\bar{\alpha}_t)+ \sigma_t^2}) \bar{\varepsilon}_{t-1}
\end{align*}

\]

又:

\[x_{t-1}=\sqrt{\bar{\alpha}_{t-1}} x_0 + \sqrt{1-\bar{\alpha}_{t-1}} \varepsilon^{\prime}_{t-1}
\]

观察系数可以得到方程组:

\[\begin{cases}
a + b\sqrt{\bar{\alpha}_t} = \sqrt{\bar{\alpha}_{t-1}} \\
\sqrt{b^2(1-\bar{\alpha}_t)+ \sigma_t^2} = \sqrt{1-\bar{\alpha}_{t-1}}
\end{cases}
\]

三个未知数 两个方程,可以用 \(\sigma_t\) 表示 \(a,b\):

\[\begin{cases}
a = \sqrt{\bar{\alpha}_{t-1}} - \sqrt{\bar{\alpha}_t} \sqrt{\dfrac{1-\bar{\alpha}_{t-1}-\sigma_t^2}{1-\bar{\alpha}_t}} \\
b = \sqrt{\dfrac{1-\bar{\alpha}_{t-1}-\sigma_t^2}{1-\bar{\alpha}_t}}
\end{cases}
\]

\(a, b\) 代入 \(q(x_{t-1}|x_t,x_0) := \mathcal{N}(x_{t-1}; a x_0 + b x_t,\sigma_t^2 I)\)

\[q(x_{t-1}|x_t,x_0) := \mathcal{N}(x_{t-1}; \underbrace{ \left( \sqrt{\bar{\alpha}_{t-1}} - \sqrt{\bar{\alpha}_t} \sqrt{\dfrac{1-\bar{\alpha}_{t-1}-\sigma_t^2}{1-\bar{\alpha}_t}}\right ) x_0 + (\sqrt{\dfrac{1-\bar{\alpha}_{t-1}-\sigma_t^2}{1-\bar{\alpha}_t}}) x_t}_{\mu_q(x_t,x_0,t)},\sigma_t^2 I)
\]

\[x_t=\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1-\bar{\alpha}_t} \bar{\varepsilon}_0 \\
x_0 = \dfrac{1}{\sqrt{\bar{\alpha}_t}}x_t - \dfrac{\sqrt{1-\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \bar{\varepsilon}_0 \\
\]

代入 \(x_0\) 有:

\[\mu_q(x_t,x_0,t) = \sqrt{\bar{\alpha}_{t-1}} \dfrac{x_t-\sqrt{1-\bar{\alpha}_t} \bar{\varepsilon}_0}{\sqrt{\bar{\alpha}_{t}}} + \sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2} \bar{\varepsilon}_0 \\
\]
\[\begin{align*}
x_{t-1} &= \mu_q(x_t,x_0,t) + \sigma_t \varepsilon_0 \\
&= \sqrt{\bar{\alpha}_{t-1}} \underbrace{\dfrac{x_t-\sqrt{1-\bar{\alpha}_t} \bar{\varepsilon}_0}{\sqrt{\bar{\alpha}_{t}}}}_{预测的x_0} + \underbrace{\sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2} \bar{\varepsilon}_0}_{x_t的方向} + \underbrace{\sigma_t \varepsilon_0}_{随机噪声扰动}
\end{align*}

\]

通过观察 \(x_{t-1}\) 的分布,我们建模采样分布为高斯分布:

\[p_\theta(x_{t-1}|x_t):=\mathcal{N}(x_{t-1};\mu_\theta(x_t,t), \Sigma_\theta(x_t,t)I)
\]

并且均值和方差也采用相似的形式:

\[\begin{align*}
\mu_\theta(x_t,t) &= \sqrt{\bar{\alpha}_{t-1}} \dfrac{x_t-\sqrt{1-\bar{\alpha}_t} \epsilon_\theta(x_t,t) }{\sqrt{\bar{\alpha}_{t}}} + \sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2} \epsilon_\theta(x_t,t) \\
\Sigma_\theta(x_t,t) &= \sigma_t^2
\end{align*}
\]

其中 \(\epsilon_\theta(x_t,t)\) 为预测的噪声。

此时,确定优化目标只需要 \(q(x_{t-1}|x_t,x_0)\) 和 \(p_\theta(x_{t-1}|x_t)\) 两个分布尽可能相似,使用KL散度来度量,则有:

\[\begin{align*}
&\quad \ \underset{\theta}{argmin} D_{KL}(q(x_{t-1}|x_t,x_0)||p_\theta(x_{t-1}|x_t)) \\
&=\underset{\theta}{argmin} D_{KL}(\mathcal{N}(x_{t-1};\mu_q, \Sigma_q(t))||\mathcal{N}(x_{t-1};\mu_\theta, \Sigma_q(t))) \\
&=\underset{\theta}{argmin} \dfrac{1}{2} \left[ log\dfrac{|\Sigma_q(t)|}{|\Sigma_q(t)|} - k + tr(\Sigma_q(t)^{-1}\Sigma_q(t)) + (\mu_q-\mu_\theta)^T \Sigma_q(t)^{-1} (\mu_q-\mu_\theta) \right] \\
&=\underset{\theta}{argmin} \dfrac{1}{2} \left[ 0 - k + k + (\mu_q-\mu_\theta)^T (\sigma_t^2I)^{-1} (\mu_q-\mu_\theta) \right] \\
&\overset{内积公式A^TA}{=} \underset{\theta}{argmin} \dfrac{1}{2\sigma_t^2} \left[ ||\mu_q-\mu_\theta||_2^2 \right] \\
&\overset{代入\mu_q,\mu_\theta}{=} \underset{\theta}{argmin} \dfrac{1}{2\sigma_t^2} (\sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2} - \dfrac{\sqrt{\bar{\alpha}_{t-1}} \sqrt{1-\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}}) \left[ ||\bar{\varepsilon}_0-\epsilon_\theta(x_t,t)||_2^2 \right]
\end{align*}
\]

恰好与DDPM的优化目标一致,所以我们可以直接复用DDPM训练好的模型。

\(p_{\theta}\) 的采样步骤则为:

\[x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \underbrace{\dfrac{x_t-\sqrt{1-\bar{\alpha}_t} \epsilon_\theta(x_t,t)}{\sqrt{\bar{\alpha}_{t}}}}_{预测的x_0} + \underbrace{\sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2} \epsilon_\theta(x_t,t)}_{x_t的方向} + \underbrace{\sigma_t \varepsilon}_{随机噪声扰动}
\]

令 \(\sigma_t=\eta \sqrt{\dfrac{(1-{\alpha}_{t})(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}}\)

当 \(\eta =1\) 时,前向过程为 Markovian ,采样过程变为 DDPM 。

当 \(\eta =0\) 时,采样过程为确定过程,此时的模型 称为 隐概率模型(implicit probabilstic model)。

DDIM如何加速采样:

在 DDPM 中,基于马尔可夫链 \(t\) 与 \(t-1\) 是相邻关系,例如 \(t=100\) 则 \(t-1=99\);

在 DDIM 中,\(t\) 与 \(t-1\) 只表示前后关系,例如 \(t=100\) 时,\(t-1\) 可以是 90 也可以是 80、70,只需保证 \(t-1 < t\) 即可。

此时构建的采样子序列 \(\tau=[\tau_i,\tau_{i-1},\cdots,\tau_{1}] \ll [t,t-1,\cdots,1]\) 。

例如,原序列 \(\Tau=[100,99,98,\cdots,1]\),采样子序列为 \(\tau=[100,90,80,\cdots,1]\) 。

DDIM 采样公式为:

\[x_{\tau_{i-1}} = \sqrt{\bar{\alpha}_{\tau_{i-1}}} {\dfrac{x_{\tau_{i}}-\sqrt{1-\bar{\alpha}_{\tau_{i}}} \epsilon_\theta(x_{\tau_{i}},{\tau_{i}})}{\sqrt{\bar{\alpha}_{\tau_{i}}}}} + {\sqrt{1-\bar{\alpha}_{\tau_{i-1}}-\sigma_{\tau_{i}}^2} \epsilon_\theta(x_{\tau_{i}},{\tau_{i}})} + {\sigma_{\tau_{i}} \varepsilon}
\]

当 \(\eta= 0\) 时,DDIM 采样公式为:

\[ x_{\tau_{i-1}} = \dfrac{\sqrt{\bar{\alpha}_{\tau_{i-1}}}}{\sqrt{\bar{\alpha}_{\tau_{i}}}} x_{\tau_{i}} + \left( \sqrt{1-\bar{\alpha}_{\tau_{i-1}}} - \dfrac{\sqrt{\bar{\alpha}_{\tau_{i-1}}}}{\sqrt{\bar{\alpha}_{\tau_{i}}}} \sqrt{1-\bar{\alpha}_{\tau_{i}}} \right) \epsilon_\theta(x_{\tau_i},\tau_i)
\]

代码实现

训练过程与 DDPM 一致,代码参考上一篇文章。采样代码如下:

device = 'cuda'
torch.cuda.empty_cache()
model = Unet().to(device)
model.load_state_dict(torch.load('ddpm_T1000_l2_epochs_300.pth'))
model.eval() image_size=96
epochs = 500
batch_size = 128
T=1000
betas = torch.linspace(0.0001, 0.02, T).to('cuda') # torch.Size([1000]) # 每隔20采样一次
tau_index = list(reversed(range(0, T, 20))) #[980, 960, ..., 20, 0]
eta = 0.003 # train
alphas = 1 - betas # 0.9999 -> 0.98
alphas_cumprod = torch.cumprod(alphas, axis=0) # 0.9999 -> 0.0000
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1-alphas_cumprod) def get_val_by_index(val, t, x_shape):
batch_t = t.shape[0]
out = val.gather(-1, t)
return out.reshape(batch_t, *((1,) * (len(x_shape) - 1))) # torch.Size([batch_t, 1, 1, 1]) def p_sample_ddim(model):
def step_denoise(model, x_tau_i, tau_i, tau_i_1):
sqrt_alphas_bar_tau_i = get_val_by_index(sqrt_alphas_cumprod, tau_i, x_tau_i.shape)
sqrt_alphas_bar_tau_i_1 = get_val_by_index(sqrt_alphas_cumprod, tau_i_1, x_tau_i.shape) denoise = model(x_tau_i, tau_i) if eta == 0:
sqrt_1_minus_alphas_bar_tau_i = get_val_by_index(sqrt_one_minus_alphas_cumprod, tau_i, x_tau_i.shape)
sqrt_1_minus_alphas_bar_tau_i_1 = get_val_by_index(sqrt_one_minus_alphas_cumprod, tau_i_1, x_tau_i.shape)
x_tau_i_1 = sqrt_alphas_bar_tau_i_1 / sqrt_alphas_bar_tau_i * x_tau_i \
+ (sqrt_1_minus_alphas_bar_tau_i_1 - sqrt_alphas_bar_tau_i_1 / sqrt_alphas_bar_tau_i * sqrt_1_minus_alphas_bar_tau_i) \
* denoise
return x_tau_i_1 sigma = eta * torch.sqrt((1-get_val_by_index(alphas, tau_i, x_tau_i.shape)) * \
(1-get_val_by_index(sqrt_alphas_cumprod, tau_i_1, x_tau_i.shape)) / get_val_by_index(sqrt_one_minus_alphas_cumprod, tau_i, x_tau_i.shape)) noise_z = torch.randn_like(x_tau_i, device=x_tau_i.device) # 整个式子由三部分组成
c1 = sqrt_alphas_bar_tau_i_1 / sqrt_alphas_bar_tau_i * (x_tau_i - get_val_by_index(sqrt_one_minus_alphas_cumprod, tau_i, x_tau_i.shape) * denoise)
c2 = torch.sqrt(1 - get_val_by_index(alphas_cumprod, tau_i_1, x_tau_i.shape) - sigma) * denoise
c3 = sigma * noise_z
x_tau_i_1 = c1 + c2 + c3 return x_tau_i_1 img_pred = torch.randn((4, 3, image_size, image_size), device=device) for k in range(0, len(tau_index)):
# print(tau_index)
# 因为 tau_index 是倒序的,tau_i = k, tau_i_1 = k+1,这里不能弄反
tau_i_1 = torch.tensor([tau_index[k+1]], device=device, dtype=torch.long)
tau_i = torch.tensor([tau_index[k]], device=device, dtype=torch.long)
img_pred = step_denoise(model, img_pred, tau_i, tau_i_1) torch.cuda.empty_cache()
if tau_index[k+1] == 0: return img_pred return img_pred with torch.no_grad():
img = p_sample_ddim(model)
img = torch.clamp(img, -1.0, 1.0) show_img_batch(img.detach().cpu())

DDIM

https://arxiv.org/pdf/2010.02502

https://github.com/ermongroup/ddim

Diffusion系列 - DDIM 公式推导 + 代码 -(三)的更多相关文章

  1. Android系列之网络(三)----使用HttpClient发送HTTP请求(分别通过GET和POST方法发送数据)

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  2. Android系列之Fragment(三)----Fragment和Activity之间的通信(含接口回调)

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  3. ReactiveSwift源码解析(九) SignalProducerProtocol延展中的Start、Lift系列方法的代码实现

    上篇博客我们聊完SignalProducer结构体的基本实现后,我们接下来就聊一下SignalProducerProtocol延展中的start和lift系列方法.SignalProducer结构体的 ...

  4. JavaScript 系列博客(三)

    JavaScript 系列博客(三) 前言 本篇介绍 JavaScript 中的函数知识. 函数的三种声明方法 function 命令 可以类比为 python 中的 def 关键词. functio ...

  5. 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇

    [原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...

  6. Linux Shell系列教程之(三)Shell变量

    本文是Linux Shell系列教程的第(三)篇,更多shell教程请看:Linux Shell系列教程 Shell作为一种高级的脚本类语言,也是支持自定义变量的.今天就为大家介绍下Shell中的变量 ...

  7. 【HANA系列】【第三篇】SAP HANA XS的JavaScript安全事项

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列][第三篇]SAP HANA XS ...

  8. 孟老板 ListAdapter封装, 告别Adapter代码 (三)

    BaseAdapter系列 ListAdapter封装, 告别Adapter代码 (一) ListAdapter封装, 告别Adapter代码 (二) ListAdapter封装, 告别Adapter ...

  9. 《手把手教你》系列技巧篇(三十)-java+ selenium自动化测试- Actions的相关操作下篇(详解教程)

    1.简介 本文主要介绍两个在测试过程中可能会用到的功能:Actions类中的拖拽操作和Actions类中的划取字段操作.例如:需要在一堆log字符中随机划取一段文字,然后右键选择摘取功能. 2.拖拽操 ...

  10. 《手把手教你》系列技巧篇(三十一)-java+ selenium自动化测试- Actions的相关操作-番外篇(详解教程)

    1.简介 上一篇中,宏哥说的宏哥在最后提到网站的反爬虫机制,那么宏哥在自己本地做一个网页,没有那个反爬虫的机制,谷歌浏览器是不是就可以验证成功了,宏哥就想验证一下自己想法,于是写了这一篇文章,另外也是 ...

随机推荐

  1. Jmeter二次开发函数 - 文本替换

    此篇文章将在Jmeter创建一个新函数,实现替换文本中的指定内容功能.效果图如下 1.eclipse项目创建步骤此处省略,可参考上一篇Jmeter二次开发函数之入门 2.新建class命名为" ...

  2. Vue Hook 封装通用型表格

    一.创建通用型表格的需求 实现一个通用型表格组件,具备以下功能: 动态列配置. 分页功能. 排序功能. 可扩展的行操作功能. 二.设计通用型表格组件 首先,需要设计一个基础的表格组件,它接受列配置.数 ...

  3. 【Excel】VBA编程 02 访问MySQL数据库

    1.配置Windows连接驱动ODBC 因为是访问MySQL,则对应的ODBC驱动由MySQL厂商发布 https://dev.mysql.com/downloads/connector/odbc/ ...

  4. 【Vue】02 Component 组件 & Axios

    Vue自定义组件: 不论任何注册组件的方式:template属性有且仅有一个根节点标签 就是说模版属性的标签只能有一个在最外面 <div id="container-element&q ...

  5. xshell终端——多个窗格同步输入——xshell同时控制多个窗口的快捷方式

    参考: https://blog.csdn.net/m0_58347801/article/details/129551382 ======================== 突发发现了终端的另类用 ...

  6. 【转载】 AI助力神经科学:DeepMind 复现大脑空间导航方式

    原文地址: https://baijiahao.baidu.com/s?id=1600279012514462353&wfr=spider&for=pc =============== ...

  7. MFC实现屏幕截屏

    屏幕截屏 void CMainFormDlg::GetScreenPic(Rect area, OUT Mat &img, float rate, bool gray) { CDC *pDC ...

  8. 初探 Rust 语言与环境搭建

    1. Rust 简介 Rust 的历史 起源:Rust 语言最初由 Mozilla 研究员 Graydon Hoare 于 2006 年开始设计,并于 2009 年首次公开. 开发:Rust 是 Mo ...

  9. 【Azure Logic App】在逻辑应用中开启或关闭一个工作流是否会对其它工作流产生影响呢?

    问题描述 使用标准版的Azure Logic App服务,可以创建多个工作流(workflow),如果在启用/禁用其它的工作流时,是否会对正在运行其它工作流造成影响呢? 问题解答 在实际的测验中,我们 ...

  10. ThinkPHP 6 + PHP7.4.3nts +nginx 使用mysql和oracle数据库

    ThinkPHP 6 + PHP7.4.3nts +nginx 使用mysql和oracle数据库. 前言 业务需求,之前使用的php 7.3.4nts ,mysql自己写的代码,需要对接第三方系统, ...