2023年国家基地“楚慧杯”网络安全实践能力竞赛初赛-Crypto+Misc WP
Misc
ez_zip
题目
4096个压缩包套娃
我的解答:
写个脚本直接解压即可:
import zipfile
name = '附件路径\\题目附件.zip'
for i in range(4097):
f = zipfile.ZipFile(name , 'r')
f.extractall(pwd=name[:-4].encode())
name = f.filelist[0].filename
print(name[:-4],end="")
f.close()
得到
+-+++-++ +-+++++- +-+-++-- +-++++-- +-+-+-++ +-+++--+ +----+-- ++--+++- ++--++++ +--+++-- ++--+-+- ++---+++ ++--++-+ ++--+-+- ++---+++ +--+++-- +--+++-- +--++--+ ++--+++- +--++-+- ++--+--- +--+++-- ++--+--+ ++--++-- ++--+++- +--++-+- ++--+-+- ++---++- ++--+++- ++--+++- +--++-+- +--++-++ ++--+--+ +--++++- +--+++-- +--+++-- ++--+-++ +--++-+- +--++-++ +-----+-
一眼丁真01,将+改成0,-改成1
x='''01000100 01000001 01010011 01000011 01010100 01000110 01111011 00110001 00110000 01100011 00110101 00111000 00110010 00110101 00111000 01100011 01100011 01100110 00110001 01100101 00110111 01100011 00110110 00110011 00110001 01100101 00110101 00111001 00110001 00110001 01100101 01100100 00110110 01100001 01100011 01100011 00110100 01100101 01100100 01111101'''
s=x.split(' ')
print(''.join(chr(int(c,2)) for c in s))
'DASCTF{10c58258ccf1e7c631e5911ed6acc4ed}'
easy取证
题目
我的解答:
一个取证问题,简单来分析一下:
本人是在windows下使用,参考:https://blog.csdn.net/m0_68012373/article/details/127419463
我们先查看镜像信息
volatility.exe -f mem.raw imageinfo
然后我们可以利用插件grep查找一下常见的信息,例如:zip,txt,docx,png,jpg等
测试之后发现桌面有个docx文档
volatility.exe -f mem.raw --profile Win7SP1x64 filescan | grep .docx
我们需要提取出来
volatility.exe -f mem.raw --profile=Win7SP1x64 dumpfiles -Q 0x000000003dceaf20 -D ./
得到
修改后缀为docx打开,复制内容到txt里面
一眼丁真snow隐写,但需要找到密码,我们使用mimikatz
(mimikatz插件可以获取系统明文密码,网上有安装教程)获取密码
得到
H7Qmw_X+WB6BXDXa
然后直接解码即可
SNOW.EXE -C -p "H7Qmw_X+WB6BXDXa" White.txt
Crypto
so-large-e
题目
公钥
-----BEGIN PUBLIC KEY-----
MIIBIDANBgkqhkiG9w0BAQEFAAOCAQ0AMIIBCAKBgQCl7ZhtXDOIFdSnnejtOn2W
OdcqyzrvKMVFTIqSyPV3Tkj5m9ETc/rlvLJLcQvI0V6tr+u5Tq+zqWBQzsvRsvKt
+ap0JW8up0qD1nGIvcJVdsWAjdse7AH/N3+xg8NrH3nO0OIWzMpkGH+4TVsOBu8M
nhnR9SxTkDp+gUtHtPR/awKBgQChjp2PFfpCV4hrVyPJrKP2gHbW+o7mBNiUd3Av
Ucbkr7rA6Sj3tU33yGKIoXbmZC4rWNcuqrsoCPvIFl/YHYPKVDOl2PlLaDVi/Q5E
ymGkUfPXoZsScxvkZtkOt9XY4wWEeDMtxF/swnV0nhAUSJEHamFL3i0PAWf9uBdd
VheH4Q==
-----END PUBLIC KEY-----
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from flag import flag
import random
m = bytes_to_long(flag)
p = getPrime(512)
q = getPrime(512)
n = p*q
e = random.getrandbits(1024)
assert size(e)==1024
phi = (p-1)*(q-1)
assert GCD(e,phi)==1
d = inverse(e,phi)
assert size(d)==269
pub = (n, e)
PublicKey = RSA.construct(pub)
with open('pub.pem', 'wb') as f :
f.write(PublicKey.exportKey())
c = pow(m,e,n)
print('c =',c)
print(long_to_bytes(pow(c,d,n)))
#c = 6838759631922176040297411386959306230064807618456930982742841698524622016849807235726065272136043603027166249075560058232683230155346614429566511309977857815138004298815137913729662337535371277019856193898546849896085411001528569293727010020290576888205244471943227253000727727343731590226737192613447347860
我的解答:
我们先分解公钥得到n,e
from gmpy2 import *
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
# 公钥提取
with open("pub.pem","r",encoding="utf-8") as file:
text=file.read()
key=RSA.import_key(text)
e=key.e
n=key.n
print(e)
print(n)
113449247876071397911206070019495939088171696712182747502133063172021565345788627261740950665891922659340020397229619329204520999096535909867327960323598168596664323692312516466648588320607291284630435682282630745947689431909998401389566081966753438869725583665294310689820290368901166811028660086977458571233
116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723
发现这个e很大,我们根据题目代码可知它跟n一个数量级。而d很小,想到维纳攻击或低解密指数攻击。但尝试无果有报错。问题就在于他的私钥太小d < N^0.292
并不满足维纳或低解密d的要求。
因此我们需要爆出真正的满足题目条件的d,利用LLL-attacks解出d
详细解析可参考:https://github.com/Gao-Chuan/RSA-and-LLL-attacks/blob/master/boneh_durfee.sage
from __future__ import print_function
import time
############################################
# Config
##########################################
"""
Setting debug to true will display more informations
about the lattice, the bounds, the vectors...
"""
debug = True
"""
Setting strict to true will stop the algorithm (and
return (-1, -1)) if we don't have a correct
upperbound on the determinant. Note that this
doesn't necesseraly mean that no solutions
will be found since the theoretical upperbound is
usualy far away from actual results. That is why
you should probably use `strict = False`
"""
strict = False
"""
This is experimental, but has provided remarkable results
so far. It tries to reduce the lattice as much as it can
while keeping its efficiency. I see no reason not to use
this option, but if things don't work, you should try
disabling it
"""
helpful_only = True
dimension_min = 7 # stop removing if lattice reaches that dimension
############################################
# Functions
##########################################
# display stats on helpful vectors
def helpful_vectors(BB, modulus):
nothelpful = 0
for ii in range(BB.dimensions()[0]):
if BB[ii,ii] >= modulus:
nothelpful += 1
print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
# display matrix picture with 0 and X
def matrix_overview(BB, bound):
for ii in range(BB.dimensions()[0]):
a = ('%02d ' % ii)
for jj in range(BB.dimensions()[1]):
a += '0' if BB[ii,jj] == 0 else 'X'
if BB.dimensions()[0] < 60:
a += ' '
if BB[ii, ii] >= bound:
a += '~'
print(a)
# tries to remove unhelpful vectors
# we start at current = n-1 (last vector)
def remove_unhelpful(BB, monomials, bound, current):
# end of our recursive function
if current == -1 or BB.dimensions()[0] <= dimension_min:
return BB
# we start by checking from the end
for ii in range(current, -1, -1):
# if it is unhelpful:
if BB[ii, ii] >= bound:
affected_vectors = 0
affected_vector_index = 0
# let's check if it affects other vectors
for jj in range(ii + 1, BB.dimensions()[0]):
# if another vector is affected:
# we increase the count
if BB[jj, ii] != 0:
affected_vectors += 1
affected_vector_index = jj
# level:0
# if no other vectors end up affected
# we remove it
if affected_vectors == 0:
print("* removing unhelpful vector", ii)
BB = BB.delete_columns([ii])
BB = BB.delete_rows([ii])
monomials.pop(ii)
BB = remove_unhelpful(BB, monomials, bound, ii-1)
return BB
# level:1
# if just one was affected we check
# if it is affecting someone else
elif affected_vectors == 1:
affected_deeper = True
for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
# if it is affecting even one vector
# we give up on this one
if BB[kk, affected_vector_index] != 0:
affected_deeper = False
# remove both it if no other vector was affected and
# this helpful vector is not helpful enough
# compared to our unhelpful one
if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):
print("* removing unhelpful vectors", ii, "and", affected_vector_index)
BB = BB.delete_columns([affected_vector_index, ii])
BB = BB.delete_rows([affected_vector_index, ii])
monomials.pop(affected_vector_index)
monomials.pop(ii)
BB = remove_unhelpful(BB, monomials, bound, ii-1)
return BB
# nothing happened
return BB
"""
Returns:
* 0,0 if it fails
* -1,-1 if `strict=true`, and determinant doesn't bound
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):
"""
Boneh and Durfee revisited by Herrmann and May
finds a solution if:
* d < N^delta
* |x| < e^delta
* |y| < e^0.5
whenever delta < 1 - sqrt(2)/2 ~ 0.292
"""
# substitution (Herrman and May)
PR.<u, x, y> = PolynomialRing(ZZ)
Q = PR.quotient(x*y + 1 - u) # u = xy + 1
polZ = Q(pol).lift()
UU = XX*YY + 1
# x-shifts
gg = []
for kk in range(mm + 1):
for ii in range(mm - kk + 1):
xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk
gg.append(xshift)
gg.sort()
# x-shifts list of monomials
monomials = []
for polynomial in gg:
for monomial in polynomial.monomials():
if monomial not in monomials:
monomials.append(monomial)
monomials.sort()
# y-shifts (selected by Herrman and May)
for jj in range(1, tt + 1):
for kk in range(floor(mm/tt) * jj, mm + 1):
yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)
yshift = Q(yshift).lift()
gg.append(yshift) # substitution
# y-shifts list of monomials
for jj in range(1, tt + 1):
for kk in range(floor(mm/tt) * jj, mm + 1):
monomials.append(u^kk * y^jj)
# construct lattice B
nn = len(monomials)
BB = Matrix(ZZ, nn)
for ii in range(nn):
BB[ii, 0] = gg[ii](0, 0, 0)
for jj in range(1, ii + 1):
if monomials[jj] in gg[ii].monomials():
BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)
# Prototype to reduce the lattice
if helpful_only:
# automatically remove
BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)
# reset dimension
nn = BB.dimensions()[0]
if nn == 0:
print("failure")
return 0,0
# check if vectors are helpful
if debug:
helpful_vectors(BB, modulus^mm)
# check if determinant is correctly bounded
det = BB.det()
bound = modulus^(mm*nn)
if det >= bound:
print("We do not have det < bound. Solutions might not be found.")
print("Try with highers m and t.")
if debug:
diff = (log(det) - log(bound)) / log(2)
print("size det(L) - size e^(m*n) = ", floor(diff))
if strict:
return -1, -1
else:
print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
# display the lattice basis
if debug:
matrix_overview(BB, modulus^mm)
# LLL
if debug:
print("optimizing basis of the lattice via LLL, this can take a long time")
BB = BB.LLL()
if debug:
print("LLL is done!")
# transform vector i & j -> polynomials 1 & 2
if debug:
print("looking for independent vectors in the lattice")
found_polynomials = False
for pol1_idx in range(nn - 1):
for pol2_idx in range(pol1_idx + 1, nn):
# for i and j, create the two polynomials
PR.<w,z> = PolynomialRing(ZZ)
pol1 = pol2 = 0
for jj in range(nn):
pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)
pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)
# resultant
PR.<q> = PolynomialRing(ZZ)
rr = pol1.resultant(pol2)
# are these good polynomials?
if rr.is_zero() or rr.monomials() == [1]:
continue
else:
print("found them, using vectors", pol1_idx, "and", pol2_idx)
found_polynomials = True
break
if found_polynomials:
break
if not found_polynomials:
print("no independant vectors could be found. This should very rarely happen...")
return 0, 0
rr = rr(q, q)
# solutions
soly = rr.roots()
if len(soly) == 0:
print("Your prediction (delta) is too small")
return 0, 0
soly = soly[0][0]
ss = pol1(q, soly)
solx = ss.roots()[0][0]
#
return solx, soly
def example():
############################################
# How To Use This Script
##########################################
#
# The problem to solve (edit the following values)
#
# the modulus
e = 113449247876071397911206070019495939088171696712182747502133063172021565345788627261740950665891922659340020397229619329204520999096535909867327960323598168596664323692312516466648588320607291284630435682282630745947689431909998401389566081966753438869725583665294310689820290368901166811028660086977458571233
N = 116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723
# the hypothesis on the private exponent (the theoretical maximum is 0.292)
delta = .27 # this means that d < N^delta
#
# Lattice (tweak those values)
#
# you should tweak this (after a first run), (e.g. increment it until a solution is found)
m = 6 # size of the lattice (bigger the better/slower)
# you need to be a lattice master to tweak these
t = int((1-2*delta) * m) # optimization from Herrmann and May
X = 2*floor(N^delta) # this _might_ be too much
Y = floor(N^(1/2)) # correct if p, q are ~ same size
#
# Don't touch anything below
#
# Problem put in equation
P.<x,y> = PolynomialRing(ZZ)
A = int((N+1)/2)
pol = 1 + x * (A + y)
#
# Find the solutions!
#
# Checking bounds
if debug:
print("=== checking values ===")
print("* delta:", delta)
print("* delta < 0.292", delta < 0.292)
print("* size of e:", int(log(e)/log(2)))
print("* size of N:", int(log(N)/log(2)))
print("* m:", m, ", t:", t)
# boneh_durfee
if debug:
print("=== running algorithm ===")
start_time = time.time()
solx, soly = boneh_durfee(pol, e, m, t, X, Y)
# found a solution?
if solx > 0:
print("=== solution found ===")
if False:
print("x:", solx)
print("y:", soly)
d = int(pol(solx, soly) / e)
print("private key found:", d)
else:
print("=== no solution was found ===")
if debug:
print(("=== %s seconds ===" % (time.time() - start_time)))
if __name__ == "__main__":
example()
之后直接解即可
import gmpy2
from Crypto.Util.number import *
d=663822343397699728953336968317794118491145998032244266550694156830036498673227937
c = 6838759631922176040297411386959306230064807618456930982742841698524622016849807235726065272136043603027166249075560058232683230155346614429566511309977857815138004298815137913729662337535371277019856193898546849896085411001528569293727010020290576888205244471943227253000727727343731590226737192613447347860
n=116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723
m=pow(c,d,n)
print(long_to_bytes(m))
#DASCTF{6f4fadce-5378-d17f-3c2d-2e064db4af19}
matrixequation
题目
from sage.all import *
import string
from myflag import finalflag, flag
A = matrix([[0 for i in range(11)] for i in range(11)])
for k in range(len(flag)):
i, j = 5*k // 11, 5*k % 11
A[i, j] = alphabet.index(flag[k])
from hashlib import md5
assert(finalflag == 'DASCTF{' + f'{md5(flag.encode()).hexdigest()}' + '}')
key = getKey()
R, leftmatrix, matrixU = key
tmpMatrix = leftmatrix * matrixU
X = A + R
Y = tmpMatrix * X
E = leftmatrix.inverse() * Y
f = open('output','w')
f.write(str(E)+'\n')
f.write(str(leftmatrix * matrixU * leftmatrix)+'\n')
f.write(str(f'{leftmatrix.inverse() * tmpMatrix**2 * leftmatrix}\n'))
f.write(str(f'{R.inverse() * tmpMatrix**8}\n'))
A = matrix([[0 for i in range(11)] for i in range(11)])
for k in range(len(flag)):
i, j = 5*k // 11, 5*k % 11
A[i, j] = alphabet.index(flag[k])
from hashlib import md5
assert(finalflag == 'DASCTF{' + f'{md5(flag.encode()).hexdigest()}' + '}')
key = getKey()
R, leftmatrix, matrixU = key
tmpMatrix = leftmatrix * matrixU
X = A + R
Y = tmpMatrix * X
E = leftmatrix.inverse() * Y
f = open('output','w')
f.write(str(E)+'\n')
f.write(str(leftmatrix * matrixU * leftmatrix)+'\n')
f.write(str(f'{leftmatrix.inverse() * tmpMatrix**2 * leftmatrix}\n'))
f.write(str(f'{R.inverse() * tmpMatrix**8}\n'))
[53 19 40 7 22 46 69 11 31 48 57]
[66 47 13 39 1 34 26 15 52 18 55]
[47 1 9 14 58 34 40 27 9 1 36]
[36 19 38 30 39 30 21 27 1 4 13]
[25 10 52 45 69 63 3 64 13 51 44]
[48 2 64 19 49 51 39 29 22 35 17]
[69 48 27 17 15 42 60 42 15 43 7]
[39 37 56 5 49 57 51 49 3 53 25]
[50 39 9 30 19 63 20 12 8 55 35]
[24 26 58 56 43 70 66 27 32 70 59]
[ 9 34 18 31 65 3 48 39 39 40 53]
[62 17 50 41 4 7 5 4 20 15 45]
[ 8 59 38 18 42 31 60 58 35 1 46]
[25 20 45 31 69 45 59 34 46 63 69]
[ 6 2 65 44 53 59 11 52 37 48 40]
[33 52 4 9 6 7 34 4 59 59 6]
[65 64 53 22 49 22 58 50 48 66 25]
[ 0 43 42 68 16 35 20 69 1 14 18]
[23 61 44 20 30 38 10 68 52 39 4]
[ 1 8 31 31 11 54 41 70 49 40 1]
[58 29 28 60 23 13 67 33 14 15 2]
[23 25 70 1 13 57 52 21 54 64 26]
[10 5 15 49 12 53 46 23 44 40 67]
[41 21 62 22 40 69 59 0 28 42 52]
[ 9 66 44 3 48 2 53 8 46 52 4]
[ 8 50 15 56 16 31 47 5 70 6 43]
[59 34 48 5 55 50 61 39 38 7 60]
[46 46 9 36 12 49 48 30 64 30 45]
[62 33 2 19 3 15 69 25 0 51 69]
[27 10 48 26 11 32 1 40 29 59 16]
[18 60 33 64 15 41 22 9 11 60 22]
[32 52 15 27 1 63 55 54 70 17 52]
[22 27 33 38 68 36 59 17 64 18 65]
[43 68 27 18 44 32 47 21 46 44 14]
[12 52 44 61 26 34 53 36 18 3 61]
[10 59 14 2 42 63 31 9 53 4 55]
[63 48 59 11 54 9 54 50 68 5 28]
[66 12 58 68 52 50 5 39 19 6 70]
[42 23 24 54 54 64 3 16 20 67 28]
[60 68 63 63 34 7 0 36 3 22 68]
[10 23 0 9 64 0 52 1 24 52 21]
[65 52 42 9 43 39 15 3 36 28 28]
[21 32 35 69 49 55 0 23 4 32 42]
[61 52 49 46 50 34 70 35 39 1 16]
我的解答:
线性代数问题,题目把flag转成了矩阵A,我们要做的就是求出A
已知题目信息(由于变量较长,这里用缩略单词代替)
R, S = random_matrix
S = L * UE = L^(-1) * S * (A + R)
a = L * U * L
b = L^(-1) * S^2 * L
c = R^(-1) * S^8
求解过程
b * a^(-1) = L^(-1) * S (S = L * U = U * L)
a * b^(-1) * E = A + R (上式^(-1) * E)a * b * a^(-1) = S^2 (define ss)
c * ss^(-4) = R^(-1)a * b^(-1) * E - c * ss^(-4) = A (solve)
exp:
import re
import string
alphabet = string.printable[:71]
p = len(alphabet)
with open('output', 'r') as f:
data = f.read().split('\n')[:-1]
data = [re.findall(r'\d+', d) for d in data]
data = [[Integer(di) for di in d] for d in data]
n = 11
E = matrix(GF(p), data[:11])
LUL = matrix(GF(p), data[11: 22])
ULUL = matrix(GF(p), data[22: 33])
RiLU8 = matrix(GF(p), data[33: 44])
Ui = LUL * ULUL^(-1)
Ri = RiLU8 * Ui * (ULUL^(-1))^3 * LUL^(-1)
U = Ui^(-1)
assert Ri * (LUL * U)^4 == RiLU8
R = Ri^(-1)
AR = Ui * E
A = AR - R
print(A)
flag = ''
for k in range(24):
i, j = 5*k // 11, 5*k % 11
flag += alphabet[A[i, j]]
print(flag)
from hashlib import md5
flag = 'DASCTF{' + f'{md5(flag.encode()).hexdigest()}' + '}'
print(flag)
2023年国家基地“楚慧杯”网络安全实践能力竞赛初赛-Crypto+Misc WP的更多相关文章
- 2021年春秋杯网络安全联赛秋季赛 勇者山峰部分wp
1.签到题-Crypto Vigenere 根据题目Vigenere可看出是维吉尼亚密码 使用在线网站破解 https://guballa.de/vigenere-solver flag:53d613 ...
- 2019年领航杯 江苏省网络信息安全竞赛 初赛部分writeup
赛题已上传,下载连接:https://github.com/raddyfiy/2019linghangcup 做出了全部的misc和前三道逆向题,排名第10,暂且贴一下writeup. 关卡一 编码解 ...
- 2020年第二届“网鼎杯”网络安全大赛 白虎组 部分题目Writeup
2020年第二届“网鼎杯”网络安全大赛 白虎组 部分题目Writeup 2020年网鼎杯白虎组赛题.zip下载 https://download.csdn.net/download/jameswhit ...
- 企业运维实践-Nginx使用geoip2模块并利用MaxMind的GeoIP2数据库实现处理不同国家或城市的访问最佳实践指南
关注「WeiyiGeek」公众号 设为「特别关注」每天带你玩转网络安全运维.应用开发.物联网IOT学习! 希望各位看友[关注.点赞.评论.收藏.投币],助力每一个梦想. 本章目录 目录 0x00 前言 ...
- 2014年TI杯大学生电子设计竞赛地区赛使用仪器及器件、设备
2014年TI杯大学生电子设计竞赛地区赛使用仪器及器件.设备 a) 3A/30V双路稳压电源(可并联): b) 60MHz示波器: c) 三位半数字万用 ...
- 2014年湖北省TI杯大学生电子设计竞赛论文格式
2014年湖北省TI杯大学生电子设计竞赛 B题:金属物体探測定位器(本科) 2014年8月15日 文件夹 1 系统方案 1.1 XXX的论证与选择........................... ...
- 2020 年TI 杯大学生电子设计竞赛E题总结(放大器非线性失真研究装置)
2020年TI杯大学生电子设计竞赛E题总结(放大器非线性失真研究装置) 摘要:E题的竞赛内容主要是参赛者自己搭建一个晶体管放大器,能够产生不失真.顶部失真.底部失真.双向失真和交越失真五种波形,并分别 ...
- "巴卡斯杯" 中国大学生程序设计竞赛 - 女生专场
Combine String #include<cstdio> #include<cstring> #include<iostream> #include<a ...
- hdu_5705_Clock("巴卡斯杯" 中国大学生程序设计竞赛 - 女生专场)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5705 题意:给你一个时间和一个角度,问你下一个时针和分针形成给出的角度是什么时候 题解:我们可以将这个 ...
- hdu_5707_Combine String("巴卡斯杯" 中国大学生程序设计竞赛 - 女生专场)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5707 题意:给你三个字符串 a,b,c,问你 c能否拆成a,b,a,b串的每一个字符在c中不能变 题解 ...
随机推荐
- Gopher进阶神器:拥抱刻意练习,从新手到大师。
发现一个非常友好的工具,帮助我们回顾练习过程,设定目标,并提供丰富多样的Gopher主题练习题. 刻意练习:从新手到大师. Carol 心理学家 Carol Dweck 做过一个实验,她找了一些十岁的 ...
- 15种实时uv实现方案系列(附源码)之一:Flink基于set实时uv统计
UVStatMultiPlans(GitHub)项目持续收集各种高性能实时uv实现方案并对各种实现方案的优缺点进行对比分析! 需求描述 统计每分钟用户每个页面的uv访问量. Kafka数据格式 {&q ...
- 用go封装一下二级认证功能
用go封装一下二级认证 本篇为用go设计开发一个自己的轻量级登录库/框架吧 - 秋玻 - 博客园 (cnblogs.com)的二级认证业务篇,会讲讲二级认证业务的实现,给库/框架增加新的功能. 源码: ...
- ERP 财务管理的应付帐款流程
导读:应付帐款流程与应收帐款流程是财务管理的开端,也是财务工作的主要流程.若能够这两大流程控制好了,ERP系统的财务模块也就成功了一大半了.我先讲一下财务管理的应付帐款流程. 企业的应付帐款有很多种类 ...
- 使用Arduino制作摩尔斯电码收发器
摩尔斯电码通过不同的排列顺序来表达不同的英文字母.数字和标点符号等.在今天,国际摩尔斯电码依然被使用着.比如,摩尔斯电码最广为人知的用法发送求救信号SOS,SOS信号的组合方式为:.再比如,假设我们通 ...
- Linux: Authentication token is no longer valid
遇见问题: [oracle@sxty-jkdb-184:/u01/rman]crontab -l Authentication token is no longer valid; new one re ...
- Kbaor_2023_9_28_Java第一次实战项目_ELM_V1_食品的实体类、工具类与实现类
Kbaor_2023_9_28_Java第一次实战项目_ELM_V1_食品的实体类.工具类与实现类 ELM_V1_食品的实体类 package elm_V1; /** * [食品实体类] * * @a ...
- Go泛型解密:从基础到实战的全方位解析
本篇文章深入探讨了Go语言的泛型特性,从其基础概念到高级用法,并通过实战示例展示了其在实际项目中的应用. 关注[TechLeadCloud],分享互联网架构.云服务技术的全维度知识.作者拥有10+年互 ...
- client-go实战之九:手写一个kubernetes的controller
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<client-go实战> ...
- RL 基础 | Value Iteration 的收敛性证明
(其实是专业课作业 感觉算法岗面试可能会问,来存一下档) 目录 问题:证明 Value Iteration 收敛性 0 Definitions - 定义 1 Bellman operator is a ...