[ARC145D] Non Arithmetic Progression Set
Problem Statement
Construct a set $S$ of integers satisfying all of the conditions below. It can be proved that at least one such set $S$ exists under the Constraints of this problem.
- $S$ has exactly $N$ elements.
- The element of $S$ are distinct integers between $-10^7$ and $10^7$ (inclusive).
- $ \displaystyle \sum _{s \in S} s = M$.
- $ y-x\neq z-y$ for every triple $ x,y,z$ $(x < y < z)$ of distinct elements in $ S$.
Constraints
- $1 \leq N \leq 10^4$
- $|M| \leq N\times 10^6$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Let $s_1,s_2,\ldots,s_N$ be the elements of $S$. Print a set $S$ that satisfies the conditions in the following format:
$s_1$ $s_2$ $\ldots$ $s_N$
If multiple solutions exist, any of them will be accepted.
Sample Input 1
3 9
Sample Output 1
1 2 6
We have $2-1 \neq 6-2$ and $1+2+6=9$, so this output satisfies the conditions. Many other solutions exist.
Sample Input 2
5 -15
Sample Output 2
-15 -5 0 2 3
$M$ may be negative.
存在等差数列,当且仅当存在三个数$x,y,z$,使得 $y-x=z-y$
移一下项,得到 \(2y=z+x\)
考虑一个数的三进制。如果集合中所有数的三进制表示下只有 \(0\) 和\(1\),那么 \(2y\) 的三进制表示下只由 \(0\) 和 \(2\) 组成。若要选出 \(x+z=2y\) ,当且仅当 \(x=z=y\),而集合有不可重性。所以如果这样构造,可以得出答案。易得构造出的数在 \([-10^7,10^7]\) 内(见附注)。
但是我们要保证所有数和为m。容易发现,如果一个集合 \(s\) 是合法的,那么给 \(s\) 中每一个数同时加上一个数,集合仍然没有等差数列。所以如果构造出序列后,我们先想办法让他们的和与 \(m\) 模 \(n\) 同余,然后再给每个数加上 \(\frac{(m-sum(s))}{n}\)即可。如何微调集合使得他们的和模 \(n\) 同余呢?在枚举三进制时,我们可以空出最后一位,然后微调。
上面就是大概思路,我们用样例详解
\(n=5,m=-15\)
首先构造有5个数的合法集合
\((0010)_3=3\)
\((0100)_3=9\)
\((0110)_3=12\)
\((1000)_3=27\)
\((1010)_3=30\)
和为 \(3+9+12+27+30=81\),模 \(5\) 余 \(1\)。\(m\) 模 \(5\) 余 \(0\)。
所以我们要选择 \(4\) 个数加 \(1\)。集合变成了:
\((0011)_3=4\)
\((0101)_3=10\)
\((0111)_3=13\)
\((1001)_3=28\)
\((1010)_3=30\)
那么我们再给每个数减去 \((85-(-15))/5=20\)。集合就是
$ {-16,-10,-7,8,10}$
代码就很好写了。
建议枚举初始合法三进制时用二进制枚举。
#include<bits/stdc++.h>
const int N=10005;
int n,s[N],ret;
long long m,x,sum,d;
int main()
{
scanf("%d%lld",&n,&m);
for(int i=2;i<=2*n;i+=2)
{
ret=3;
for(int j=1;j<15;j++)
{
if(i>>j&1)
s[i>>1]+=ret;
ret*=3;
}
sum+=s[i>>1];
}
x=((m-sum)%n+n)%n;
d=floor((1.00*m-sum)/n);
for(int i=1;i<=x;i++)
s[i]++;
for(int i=1;i<=n;i++)
printf("%lld ",s[i]+d);
}
[ARC145D] Non Arithmetic Progression Set的更多相关文章
- CF 1114 E. Arithmetic Progression
E. Arithmetic Progression 链接 题意: 交互题. 有一个等差序列,现已打乱顺序,最多询问60次来确定首项和公差.每次可以询问是否有严格大于x的数,和查看一个位置的数. 分析: ...
- POJ3495 Bitwise XOR of Arithmetic Progression
Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 772 Accepted: 175 Description Write ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- Find Missing Term in Arithmetic Progression 等差数列缺失项
查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...
- BestCoder22 1002.NPY and arithmetic progression(hdu 5143) 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5143 题目意思:给出 1, 2, 3, 4 的数量,分别为a1, a2, a3, a4,问是否在每个数 ...
- codeforces C. Arithmetic Progression 解题报告
题目链接:http://codeforces.com/problemset/problem/382/C 题目意思:给定一个序列,问是否可以通过只插入一个数来使得整个序列成为等差数列,求出总共有多少可能 ...
- cf C. Arithmetic Progression
http://codeforces.com/contest/382/problem/C 题意:给你n个数,然后让你添加一个数使得n+1个数能形成这样的规律,a[1]-a[0]=a[2]-a[1]=a[ ...
- CF1114E Arithmetic Progression(交互题,二分,随机算法)
既然是在CF上AC的第一道交互题,而且正是这场比赛让我升紫了,所以十分值得纪念. 题目链接:CF原网 题目大意:交互题. 有一个长度为 $n$ 的序列 $a$,保证它从小到大排序后是个等差数列.你不知 ...
- Codeforces 1114E - Arithmetic Progression - [二分+随机数]
题目链接:http://codeforces.com/problemset/problem/1114/E 题意: 交互题,有一个 $n$ 个整数的打乱顺序后的等差数列 $a[1 \sim n]$,保证 ...
- HDU 5143 NPY and arithmetic progression(思维)
http://acm.hdu.edu.cn/showproblem.php?pid=5143 题意: 给定数字1,2,3,4.的个数每个数字能且仅能使用一次,组成多个或一个等差数列(长度大于等于3), ...
随机推荐
- 将实体类对象数据存入和读取进csv文件(可追加)
前言 最近公司一个新的项目,因为需要存储的数据很少,单独去部署一个数据库去存储该数据显然是不划算的,所以想的是通过存入csv文件中来代替存入数据库中.说干就干. 什么是csv文件 CSV代表逗号分隔值 ...
- MySql Workbench 迁移工具 migration 提示缺少pyodbc 2.1.8 的解决方法
想把公司的数据库转到MySQL,所以想装个MySQL测试,发现新版的MySQL(8.0.34)默认安装还是有不少问题, 一.譬如表.字段大小写的问题: lower_case_table_names=0 ...
- Redis系列19:LRU内存淘汰算法分析
Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...
- MindSponge分子动力学模拟——计算单点能(2023.08)
技术背景 在前面的几篇文章中,我们分别介绍了MindSponge的软件架构.MindSponge的安装与使用和如何在MindSponge中定义一个分子系统.那么就像深度学习中的损失函数,或者目标函数, ...
- Python操作Redis大全
一.字符串 string Python操作Redis的redis模块对字符串(string)的主要操作函数包括:SET.GET.GETSET.SETEX.SETNX.MSET.MSETNX.INCR( ...
- Win10 误删winsock注册表修复。 winsock.reg
手贱删除了注册表的winsock项, 导致无法上网. 导入后需要重启电脑才能上网, 这个文件是我在别人电脑里导出来的. 下载地址: https://pan.baidu.com/s/1wH8SdeWsx ...
- xv6 进程切换中的锁:MIT6.s081/6.828 lectrue12:Coordination 以及 Lab6 Thread 心得
引言 这节课和上一节xv6进程切换是一个完整的的进程切换专题,上一节主要讨论进程切换过程中的细节,而这一节主要讨论进程切换过程中锁的使用,所以本节的两大关键词就是"Coordination& ...
- Python 潮流周刊第 20 期(摘要)
你好,我是猫哥.本周刊分享优质的 Python.AI 及通用技术内容,大部分为英文.这里是标题摘要版,查看全文请至☞:https://pythoncat.top/posts/2023-09-16-we ...
- Record - Nov. 28st, 2020 - Exam. REC
Prob. 1 Desc. & Link. 暴力为 \(\Theta(NK)\). 正解(也许): 把每一个全为正整数的子段找出来. 然后判断一下中间连接的情况即可. 但是这样决策情况太多了. ...
- android的listview控件,加了行内按钮事件导致行点击失效的问题
近日,修改一个app,原来的listview中只有行点击事件 ListView.setOnItemClickListener(new AdapterView.OnItemClickListener() ...