[ARC145D] Non Arithmetic Progression Set
Problem Statement
Construct a set $S$ of integers satisfying all of the conditions below. It can be proved that at least one such set $S$ exists under the Constraints of this problem.
- $S$ has exactly $N$ elements.
- The element of $S$ are distinct integers between $-10^7$ and $10^7$ (inclusive).
- $ \displaystyle \sum _{s \in S} s = M$.
- $ y-x\neq z-y$ for every triple $ x,y,z$ $(x < y < z)$ of distinct elements in $ S$.
Constraints
- $1 \leq N \leq 10^4$
- $|M| \leq N\times 10^6$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Let $s_1,s_2,\ldots,s_N$ be the elements of $S$. Print a set $S$ that satisfies the conditions in the following format:
$s_1$ $s_2$ $\ldots$ $s_N$
If multiple solutions exist, any of them will be accepted.
Sample Input 1
3 9
Sample Output 1
1 2 6
We have $2-1 \neq 6-2$ and $1+2+6=9$, so this output satisfies the conditions. Many other solutions exist.
Sample Input 2
5 -15
Sample Output 2
-15 -5 0 2 3
$M$ may be negative.
存在等差数列,当且仅当存在三个数$x,y,z$,使得 $y-x=z-y$
移一下项,得到 \(2y=z+x\)
考虑一个数的三进制。如果集合中所有数的三进制表示下只有 \(0\) 和\(1\),那么 \(2y\) 的三进制表示下只由 \(0\) 和 \(2\) 组成。若要选出 \(x+z=2y\) ,当且仅当 \(x=z=y\),而集合有不可重性。所以如果这样构造,可以得出答案。易得构造出的数在 \([-10^7,10^7]\) 内(见附注)。
但是我们要保证所有数和为m。容易发现,如果一个集合 \(s\) 是合法的,那么给 \(s\) 中每一个数同时加上一个数,集合仍然没有等差数列。所以如果构造出序列后,我们先想办法让他们的和与 \(m\) 模 \(n\) 同余,然后再给每个数加上 \(\frac{(m-sum(s))}{n}\)即可。如何微调集合使得他们的和模 \(n\) 同余呢?在枚举三进制时,我们可以空出最后一位,然后微调。
上面就是大概思路,我们用样例详解
\(n=5,m=-15\)
首先构造有5个数的合法集合
\((0010)_3=3\)
\((0100)_3=9\)
\((0110)_3=12\)
\((1000)_3=27\)
\((1010)_3=30\)
和为 \(3+9+12+27+30=81\),模 \(5\) 余 \(1\)。\(m\) 模 \(5\) 余 \(0\)。
所以我们要选择 \(4\) 个数加 \(1\)。集合变成了:
\((0011)_3=4\)
\((0101)_3=10\)
\((0111)_3=13\)
\((1001)_3=28\)
\((1010)_3=30\)
那么我们再给每个数减去 \((85-(-15))/5=20\)。集合就是
$ {-16,-10,-7,8,10}$
代码就很好写了。
建议枚举初始合法三进制时用二进制枚举。
#include<bits/stdc++.h>
const int N=10005;
int n,s[N],ret;
long long m,x,sum,d;
int main()
{
scanf("%d%lld",&n,&m);
for(int i=2;i<=2*n;i+=2)
{
ret=3;
for(int j=1;j<15;j++)
{
if(i>>j&1)
s[i>>1]+=ret;
ret*=3;
}
sum+=s[i>>1];
}
x=((m-sum)%n+n)%n;
d=floor((1.00*m-sum)/n);
for(int i=1;i<=x;i++)
s[i]++;
for(int i=1;i<=n;i++)
printf("%lld ",s[i]+d);
}
[ARC145D] Non Arithmetic Progression Set的更多相关文章
- CF 1114 E. Arithmetic Progression
E. Arithmetic Progression 链接 题意: 交互题. 有一个等差序列,现已打乱顺序,最多询问60次来确定首项和公差.每次可以询问是否有严格大于x的数,和查看一个位置的数. 分析: ...
- POJ3495 Bitwise XOR of Arithmetic Progression
Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 772 Accepted: 175 Description Write ...
- Dirichlet's Theorem on Arithmetic Progression
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...
- Find Missing Term in Arithmetic Progression 等差数列缺失项
查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...
- BestCoder22 1002.NPY and arithmetic progression(hdu 5143) 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5143 题目意思:给出 1, 2, 3, 4 的数量,分别为a1, a2, a3, a4,问是否在每个数 ...
- codeforces C. Arithmetic Progression 解题报告
题目链接:http://codeforces.com/problemset/problem/382/C 题目意思:给定一个序列,问是否可以通过只插入一个数来使得整个序列成为等差数列,求出总共有多少可能 ...
- cf C. Arithmetic Progression
http://codeforces.com/contest/382/problem/C 题意:给你n个数,然后让你添加一个数使得n+1个数能形成这样的规律,a[1]-a[0]=a[2]-a[1]=a[ ...
- CF1114E Arithmetic Progression(交互题,二分,随机算法)
既然是在CF上AC的第一道交互题,而且正是这场比赛让我升紫了,所以十分值得纪念. 题目链接:CF原网 题目大意:交互题. 有一个长度为 $n$ 的序列 $a$,保证它从小到大排序后是个等差数列.你不知 ...
- Codeforces 1114E - Arithmetic Progression - [二分+随机数]
题目链接:http://codeforces.com/problemset/problem/1114/E 题意: 交互题,有一个 $n$ 个整数的打乱顺序后的等差数列 $a[1 \sim n]$,保证 ...
- HDU 5143 NPY and arithmetic progression(思维)
http://acm.hdu.edu.cn/showproblem.php?pid=5143 题意: 给定数字1,2,3,4.的个数每个数字能且仅能使用一次,组成多个或一个等差数列(长度大于等于3), ...
随机推荐
- python flask 简单应用开发
转载请注明出处: Flask 是一个基于 Python 的微型 Web 框架,它提供了一组简洁而强大的工具和库,用于构建 Web 应用程序.Flask 的主要作用是帮助开发者快速搭建轻量级的.灵活的 ...
- Deep Transfer Learning综述阅读笔记
这是一篇linkedin发表的深度迁移学习综述, 里面讲了一些对于search/recommend system中的迁移学习应用. 有不少指导性的方法, 看完后摘录出来 对于ranking方向的TL, ...
- 【matplotlib基础】--图例
Matplotlib 中的图例是帮助观察者理解图像数据的重要工具.图例通常包含在图像中,用于解释不同的颜色.形状.标签和其他元素. 1. 主要参数 当不设置图例的参数时,默认的图例是这样的. impo ...
- Kong网关
Kong网关 一.kong网关核心概念 1. Upstream upstream 对象表示虚拟主机名,可用于通过多个服务对传入请求进行负载远的 2. Target 目标ip地址/主机名,其端口表示后端 ...
- Lua5.3 笔记
Lua5.3 笔记 最近用skynet,sproto通讯,完全看不懂通讯二进制是怎么写的,发现都是string这个,string那个,完全理解不来. 于是查了一下string.pack的api,和之前 ...
- TCP协议的秘密武器:流量控制与拥塞控制
TCP可靠性传输 相信大家都熟知TCP协议作为一种可靠传输协议,但它是如何确保传输的可靠性呢? 要实现可靠性传输,需要考虑许多因素,比如数据的损坏.丢失.重复以及分片顺序混乱等问题.如果不能解决这些问 ...
- 五分钟k8s入门到实战-应用配置
背景 在前面三节中已经讲到如何将我们的应用部署到 k8s 集群并提供对外访问的能力,x现在可以满足基本的应用开发需求了. 现在我们需要更进一步,使用 k8s 提供的一些其他对象来标准化我的应用开发. ...
- JUC并发编程(3)—锁中断机制
目录 1.什么是中断 2.源码解读(中断的相关API) 3.如何使用中断标识停止线程 学习视频:https://www.bilibili.com/video/BV1ar4y1x727 1.什么是中断 ...
- 单元测验4:人格知识大比武2mooc
单元测验4:人格知识大比武2 返回 本次得分为:10.00/10.00, 本次测试的提交时间为:2020-09-06, 如果你认为本次测试成绩不理想,你可以选择 再做一次 . 1 单选(2分) 关于M ...
- Go 函数的健壮性、panic异常处理、defer 机制
Go 函数的健壮性.panic异常处理.defer 机制 目录 Go 函数的健壮性.panic异常处理.defer 机制 一.函数健壮性的"三不要"原则 1.1 原则一:不要相信任 ...