postgresql json取值为何这么慢?
一、缘起
慢sql分析,总行数80w+。
比较特殊的是:其中有个字段info是jsonb类型,写法:info::json->'length' as length
同样的查询条件查这个字段和不查这个字段相差3.3倍
那看来就是json取值拖垮了查询的性能。
取jsonb中的字段有多种取法(如下), 那他们有什么区别呢,对性能有啥影响呢?
- info::json->'length'
- info::jsonb->'length'
- info::json->>'length'
- info::jsonb->>'length'
- info->'length'
- info->'length'
- info->>'length'
- info->>'length'
二、对比
2.1 输出类型对比
查询不同写法的类型:
select
info::json->'length' AS "info::json->", pg_typeof(info::json->'length' ) ,
info::jsonb->'length' AS "info::jsonb->" , pg_typeof(info::jsonb->'length' ),
info::json->>'length' AS "info::json->>" , pg_typeof(info::json->>'length' ),
info::jsonb->>'length' AS "info::jsonb->>" , pg_typeof(info::jsonb->>'length'),
info->'length' AS "info->" , pg_typeof(info->'length' ),
info->'length' AS "info->" , pg_typeof(info->'length' ),
info->>'length' AS "info->>" , pg_typeof(info->>'length' ),
info->>'length' AS "info->>" , pg_typeof(info->>'length' )
from t_test_json limit 1;
结果
info::json-> | pg_typeof | info::jsonb-> | pg_typeof | info::json->> | pg_typeof | info::jsonb->> | pg_typeof | info-> | pg_typeof | info-> | pg_typeof | info->> | pg_typeof | info->> | pg_typeof
--------------+-----------+---------------+-----------+---------------+-----------+----------------+-----------+--------+-----------+--------+-----------+---------+-----------+---------+-----------
123.9 | json | 123.9 | jsonb | 123.9 | text | 123.9 | text | 123.9 | jsonb | 123.9 | jsonb | 123.9 | text | 123.9 | textttui
分析小结
- ->> 输出类型为text
- ->输出到底为何得看调用它的数据类型,比如:info类型是jsonb, 那么info->'length'为jsonb类型
- ::json、::jsonb起到类型转换的作用。
- info本来就是jsonb类型,info::jsonb算无效转换,是否对性能有影响,待会验证
2.2 性能对比
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info::json->'length' AS "info::json->", pg_typeof(info::json->'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.04 rows=1 width=36) (actual time=0.028..0.028 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..30.62 rows=750 width=36) (actual time=0.027..0.027 rows=1 loops=1)
Planning time: 0.056 ms
Execution time: 0.047 ms
(4 rows) jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info::jsonb->'length' AS "info::jsonb->" , pg_typeof(info::jsonb->'length' )
jihite-> from t_test_json limit 1
jihite-> ;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.017..0.017 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.015..0.015 rows=1 loops=1)
Planning time: 0.053 ms
Execution time: 0.031 ms
(4 rows) jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info::jsonb->'length' AS "info::jsonb->" , pg_typeof(info::jsonb->'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.010..0.010 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.009..0.009 rows=1 loops=1)
Planning time: 0.037 ms
Execution time: 0.022 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info::json->>'length' AS "info::json->>" , pg_typeof(info::json->>'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.04 rows=1 width=36) (actual time=0.026..0.027 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..30.62 rows=750 width=36) (actual time=0.025..0.025 rows=1 loops=1)
Planning time: 0.056 ms
Execution time: 0.046 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info::jsonb->>'length' AS "info::jsonb->>" , pg_typeof(info::jsonb->>'length')
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.012 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1)
Planning time: 0.053 ms
Execution time: 0.029 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info->'length' AS "info->" , pg_typeof(info->'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.014..0.014 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.013..0.013 rows=1 loops=1)
Planning time: 0.052 ms
Execution time: 0.030 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info->'length' AS "info->" , pg_typeof(info->'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.013..0.013 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.012..0.012 rows=1 loops=1)
Planning time: 0.051 ms
Execution time: 0.029 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info->>'length' AS "info->>" , pg_typeof(info->>'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.013 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1)
Planning time: 0.053 ms
Execution time: 0.030 ms
(4 rows) jihite=>
jihite=> EXPLAIN ANALYSE
jihite-> select
jihite-> info->>'length' AS "info->>" , pg_typeof(info->>'length' )
jihite-> from t_test_json limit 1;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.013 rows=1 loops=1)
-> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1)
Planning time: 0.053 ms
Execution time: 0.029 ms
(4 rows)
从执行耗时(Execution time)分析小结
执行了类型转换 jsonb->json,转换性能(0.46ms)显然低出不转换(0.3ms)
三、优化
把查询字段:info::json->'length' 改为info->>'length',减少类型转换导致性能的损耗。
四、待调查
4.1 同类型转换是否影响性能
字段本身是jsonb, 进行强转::jsonb 是否对性能造成影响,还是在执行预编译时就已被优化
从大量数据的压测看,转换会对性能有影响,但是不大
4.2 如何分析函数的耗时
在explain analyze时,主要分析了索引对性能的影响,那函数的具体影响如何查看呢?
五、附
5.1 json、jsonb区别
- jsonb 性能优于json
- jsonb 支持索引
- 【最大差异:效率】jsonb 写入时会处理写入数据,写入相对较慢,json会保留原始数据(包括无用的空格)
推荐把JSON 数据存储为jsonb
5.2 postgresql查看字段类型函数
pg_typeof()
5.3 性能分析指令
如果您有一条执行很慢的 SQL 语句,您想知道发生了什么以及如何优化它。
EXPLAIN ANALYSE 能够获取数据库执行 sql 语句,所经历的过程,以及耗费的时间,可以协助优化性能。
关键参数:
Execution time: *** ms 表明了实际的SQL 执行时间,其中不包括查询计划的生成时间
5.4 示例中的建表语句
# 建表语句
create table t_test_json
(
id bigserial not null PRIMARY KEY,
task character varying not null,
info jsonb not null,
create_time timestamp not null default current_timestamp
);
# 压测数据
insert into t_test_json(task, info) values('1', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('2', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('3', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('4', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('5', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('6', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('7', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('8', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('9', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('10', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('11', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('12', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('13', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('14', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('15', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('16', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('17', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('18', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('19', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
insert into t_test_json(task, info) values('20', '{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}');
5.5 示例中的压测脚本
import time
import psycopg dbname, user, pwd, ip, port = '', '', '', '', '5432'
connection = "dbname=%s user=%s password=%s host=%s port=%s" % (dbname, user, pwd, ip, port)
db = psycopg.connect(connection)
cur = db.cursor() ss = 0
lens = 20
for i in range(lens):
s = time.time()
sql = ''' select
task.id,
act.payload::json->'prod_type' as prod_type
from
t_test_json
order by id
offset %s limit 1000 ''' % (i * 1000)
#print("sql:", sql)
cur.execute(sql)
rev = cur.fetchall() e = time.time()
print("scan:", i, e - s)
ss += (e - s) print('avg', ss / lens)
postgresql json取值为何这么慢?的更多相关文章
- 选中没有选中的复选框,匹配含有某个字符串的正则,json取值的两种方法,把变量定义在外面跟里面的区别
一.筛选没有选中的复选框:not("input:checked") 二.匹配有VARCHAR的字符串:".*VARCHAR.*?" 三.json取值的两种方法 ...
- JSON取值(key是中文或者数字)方式详解
JSON取值(key是中文或者数字)方式详解 先准备一个json对象用于演示 var json = {'name':'zhangsan', '年龄':23, 404:'你可能迷路了'}; 使用JS中w ...
- 闲扯json取值,联想map取值。
将list转json(list中的Bean的属性名称为变量,若为常量没必要采用此方式,直接转实体类即可) JSONArray json = JSONArray.fromObject(list); fo ...
- JSON取值前判断
public static void main(String[] args)throws Exception{ String jsonStr1="{\"access_token\& ...
- javascript中json对象json数组json字符串互转及取值
今天用到了json数组和json对象和json类型字符串之间互转及取值,记录一下: 1.json类型的字符串转换为json对象及取值 var jsonString = '{"bar" ...
- ZT: C#不建类直接Json解析与取值
C#不建类直接Json解析与取值 2017年10月19日 15:58:22 圆圆娃哈哈 阅读数:701 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn. ...
- 【js jQuery】map集合 循环迭代取值---以及 map、json对象、list、array循环迭代的方法和区别
后台给前台传来一个map @ResponseBody @RequestMapping(value = "getSys") public Map<Long,String> ...
- SNF快速开发平台MVC-EasyUI3.9之-WebApi和MVC-controller层接收的json字符串的取值方法和调用后台服务方法
最近项目组很多人问我,从前台页面传到后台controller控制层或者WebApi 时如何取值和运算操作. 今天就都大家一个在框架内一个取值技巧 前台JS调用代码: 1.下面是选中一行数据后右键点击时 ...
- 实用ExtJS教程100例-011:ExtJS Form 使用JSON数据赋值和取值
上一节中我们演示了ExtJS Form的异步加载和提交数据,本节中我们将演示如何使用JSON数据为ExtJS Form中的字段赋值和取值. 系列ExtJS教程持续更新中,点击查看>>最新E ...
- C# 后台解析json,简单方法 字符串序列化为对象,取值
如果后台是一个JSON的字符串格式如下: string str = "{\"Success\":true,\"Msg\":\"成功!\&qu ...
随机推荐
- 一连串div跟随鼠标移动
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python3.8环境安装PyHook3
Python3.8环境安装PyHook3 1. 安装python对应版本的pyhook3网 址:https://pypi.org/project/PyHook3/#files如果没有对应版本,请下载 ...
- [SrpingBoot]初步搭建springboot应用,报错:Failed to configure a DataSource: 'url' attribute is not specified and no embedd[转载]
1 错误信息 Failed to configure a DataSource: 'url' attribute is not specified and no embedded datasource ...
- 多表查询和python操作mysql
目录 多表查询的两种方法 方法1:连表操作 方法2:子查询 小知识点补充说明 可视化软件NaviCat 多表查询练习题 1.查询所有的课程的名称以及对应的任课老师姓名 2.查询平均成绩大于八十分的同学 ...
- tcp,udp tcp三次握手四次挥手,基于套接字进行简单通信
1.应用层: 应用层功能:规定应用程序的数据格式. 例:TCP协议可以为各种各样的程序传递数据,比如Email.WWW.FTP等等.那么,必须有不同协议规定电子邮件.网页.FTP数据的格式,这些应用程 ...
- python选出一定数量的随机文件到某个文件夹
import os import random import shutil def move_file(target_path, save_path, number): file_list = os. ...
- [Java EE]SpringBoot/Tomcat之启动时报"Error: Could not find or load main class CLASS xxxx"、"no main manifest attribute"异常
环境信息如下: OS: CENTOS 7 Tomcat : 9.0.46 SpringBoot: 2.3.12.RELASE Build JDK: 1.8.0_261 Runetime JDK : o ...
- Linux(五)用户管理与文件权限
1 常用的基本命令 Shell可以看作一个命令解释器,为我们提供一个交互式的文本控制台界面,可以通过终端控制台来输入命令,由shell进行解释并最终交给linux内核运行.可以看作用户和硬件的桥梁. ...
- 面向接口编程实践之aspnetcoreapi的抽象
最为一名越过菜鸟之后的开发,需要做接口开发.下面做一个纯粹的接口编程的实例demo,仅仅是一个webapi接口的抽象. 下面是代码接口,AbsEFWork是webapi,BaseEntityFrame ...
- Rainbond 结合 Jpom 实现云原生 & 本地一体化项目管理
Jpom 是一个简而轻的低侵入式在线构建.自动部署.日常运维.项目运维监控软件.提供了: 节点管理:集群节点,统一管理多节点的项目,实现快速一键分发项目文件 项目管理:创建.启动.停止.实时查看项目控 ...