NumPy 泊松分布模拟与 Seaborn 可视化技巧
泊松分布
简介
泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。
参数
泊松分布用一个参数来定义:
λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。
公式
泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:
P(k) = e^(-λ) (λ^k) / k!
其中:
e^(-λ):表示没有事件发生的概率。
(λ^k):表示 k 次事件发生的概率。
k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × ... × 2 × 1。
生成泊松分布数据
NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:
lam:事件发生的平均速率。
size:输出数组的形状。
示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:
import numpy as np
data = np.random.poisson(lam=5, size=10)
print(data)
可视化泊松分布
Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。
示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:
import seaborn as sns
import numpy as np
data = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()
正态分布与泊松分布的关系
当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。
示例:比较泊松分布和正态分布的形状:
import seaborn as sns
import numpy as np
lam = 50
# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)
# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)
sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()
练习
- 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
- 比较不同平均速率下泊松分布形状的变化。
- 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。
解决方案
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()
# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:
data = np.random.poisson(lam=lam, size=1000)
sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()
# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())
最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:Let us Coding,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
NumPy 泊松分布模拟与 Seaborn 可视化技巧的更多相关文章
- Python - Seaborn可视化:图形个性化设置的几个小技巧
1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图 ...
- 数据可视化之powerBI技巧(二十三)Power BI可视化技巧,使用DAX自定义时间轴
按照自然日历来展现疫情数据时,是这样的效果, 由于各个国家的疫情爆发时间不一致,按自然日期坐标轴很难比较各个国家的蔓延速度. 如果各个国家都从蔓延日开始统计,展示之后每日的确诊人数,就是同样的时间轴 ...
- CNN超参数优化和可视化技巧详解
https://zhuanlan.zhihu.com/p/27905191 在深度学习中,有许多不同的深度网络结构,包括卷积神经网络(CNN或convnet).长短期记忆网络(LSTM)和生成对抗网络 ...
- seaborn可视化特征的相关性
import seaborn as sn sn.heatmap(trainX.corr(),vmax=1,square=True)
- python/numpy/pandas数据操作知识与技巧
pandas针对dataframe各种操作技巧集合: filtering: 一般地,使用df.column > xx将会产生一个只有boolean值的series,以该series作为dataf ...
- seaborn可视化
文章来自https://blog.csdn.net/qq_33120943/article/details/76569756 详细教程可以查看官方额示例:http://seaborn.pydata.o ...
- 数据可视化之powerBI技巧(一)PowerBI可视化技巧:KPI指标动态展示之TOPN及其他
本文来自星友Beau的分享,在进行数据指标的展现时,对关键的少数单独展示,而对剩余的大多数折叠为其他项,是一个很常用的做法.Beau同学通过一个日常的办公场景,详细介绍了PowerBI实现的步骤,值 ...
- Helium文档5-WebUI自动化-press模拟键盘按键输入技巧
前言 press方法是用来模拟键盘按键输入,可以组合使用,来模拟键盘输入,解决一些难定位的元素 入参介绍 以下是press源码中的函数介绍 def press(key): :入参 :param ke ...
- noip模拟赛:部队[技巧?思想?]
王国军总指挥——卡西乌斯准将决定重建情报局,需要从全国各地挑选有能力的士兵,选择的标准为A,B两种能力.对于每个候选士兵,如果存在另一名士兵的两项能力均大于等于他,那么他将被淘汰.(注意:若两名士兵两 ...
- seaborn 数据可视化(二)带有类别属性的数据可视化
Seaborn的分类图分为三类,将分类变量每个级别的每个观察结果显示出来,显示每个观察分布的抽象表示,以及应用统计估计显示的权重趋势和置信区间: 第一个包括函数swarmplot()和stripplo ...
随机推荐
- 重新点亮linux 命令树————二进制安装[十一八]
前言 简单介绍一下二进制安装 正文 wget https://openresty.org/download/openresty-1.15.8.1.tar.gz tar -zxf openresty-V ...
- 基于开放共享的自主研发—MaxCompute 持续增强生态与开放性建设
简介: MaxCompute 是阿里巴巴自研的云原生数据仓库,同时也兼容大部分大数据生态系统.一个平台无法实现所有功能和解决所有问题,MaxCompute 需持续增强生态与开放性建设,方能走得更远. ...
- 测试环境不稳定&复杂的必然性及其对策
简介: 为什么测试环境的不稳定是必然的,怎么让它尽量稳定一点?为什么测试环境比生产环境更复杂,怎么让它尽量简单一点?本文将就这两点进行分享.同时,还会谈一谈对测试环境和生产环境的区别的理解. 作者 | ...
- EventBridge 与 FC 一站式深度集成解析
简介:本篇文章通过对 EventBridge 与 FC 一站式深度集成解析和集成场景的介绍,旨在帮助大家更好的了解面对丰富的事件时,如何使用 EventBridge 与 FC 的一站式集成方案,快速 ...
- 1小时打造HaaS版小小蛮驴智能车
简介: 2020年云栖大会上,阿里云发布了一款机器人"小蛮驴",瞬间激起千层浪,无人车,智能物流,机器人等一些概念又火热了一把. 借"小蛮驴"的东风以及火热的H ...
- OpenKruise v0.9.0 版本发布:新增 Pod 重启、删除防护等重磅功能
简介: OpenKruise 是阿里云开源的云原生应用自动化管理套件,也是当前托管在 Cloud Native Computing Foundation (CNCF) 下的 Sandbox 项目.它来 ...
- .NET周刊【4月第2期 2024-04-21】
国内文章 他来了他来了,.net开源智能家居之苹果HomeKit的c#原生sdk[Homekit.Net]1.0.0发布,快来打造你的私人智能家居吧 https://www.cnblogs.com/h ...
- Golang 与 JS 的字符串截取大同小异
Golang 和 JS 的字符串截取都可以利用索引定位的方式. Golang: str := "abcdef" sub := str[1: 2] JS: const str = ' ...
- ESP32 + IDF + LED
一.开发板 ESP32-S3-DevKitC-1 管脚布局 由于这个程序控制比较简单,就不赘述了,直接看程序. 二.程序 #include "freertos/FreeRTOS.h" ...
- Mybatis逆向工程的2种方法,一键高效快速生成Pojo、Mapper、XML,摆脱大量重复开发
一.写在开头 最近一直在更新<Java成长计划>这个专栏,主要是Java全流程学习的一个记录,目前已经更新到Java并发多线程部分,后续会继续更新:而今天准备开设一个全新的专栏 <E ...