Intervals

题目大意

给定 \(m\) 条形如 \((l_i,r_i,a_i)\) 的规则,你需要求出一个长为 \(n\) 的分数最大的 01 串的分数,其中一个 01 串 \(A\) 的分数被定义为

\[\sum_{i=1}^ma_i[\sum_{j=l_i}^{r_i}A_j\ge 1]
\]

思路分析

考虑 DP。

设 \(f_{i,j}\) 表示考虑 01 串的前 \(i\) 个数,最后一个 \(1\) 放在 \(j\) 时的最大分数,首先有一个特殊的转移:

\[f_{i,i}=\max_{j<i}(f_{i-1,j})
\]

也就是枚举前 \(i-1\) 个数中上一个 \(1\) 放在哪个位置,对所有可能的情况取 \(\max\)。

考虑一般情况:

从 \(i-1\) 转移到 \(i\),新的贡献只从所有右端点为 \(i\) 的区间产生,考虑到产生贡献的条件是至少包含一个 \(1\),而最后的 \(1\) 位于 \(j\),故只有这个区间包含 \(j\) 的时候才会产生贡献,故有状态转移方程:

\[f_{i,j}=f_{i-1,j}+\sum_{k=1}^m[l_k\le j][r_k=i]a_k
\]

直接转移的时间复杂度是 \(O(n^3)\) 的,不过可以通过将区间排序加双指针做到均摊 \(O(n^2)\),但依然无法通过,考虑优化。

首先发现转移只与上一维有关,可以直接优化掉 \(i\),使空间复杂度降为 \(O(n)\)。

考虑哪些区间对 \(f\) 产生贡献,不难发现,只要区间包含 \(f\) 的端点,它就对 \(f\) 有贡献,那么我们就可以把 \(f\) 丢到线段树上,对于每一个区间进行一次线段树上的区间加操作,维护区间的最大值即可。

注意 01 串全为 \(0\) 时其分数为 \(0\),故不可能产生负分数,所有的分数需要和 \(0\) 取 \(\max\)。

代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
#include <cmath> using namespace std;
const int N=200200;
#define int long long
#define mid ((l+r)>>1) int n,m,in1,in2,in3; struct Node{
int l,r,a;
}a[N];
vector<Node> v[N]; struct ST{
int maxn[N<<2],tag[N<<2];
void change_t(int p,int k){
maxn[p]+=k;tag[p]+=k;
}
void push_down(int p){
if(!tag[p]) return ;
change_t(p<<1,tag[p]);
change_t(p<<1|1,tag[p]);
tag[p]=0;
}
void change(int p,int l,int r,int x,int y,int k){
if(x<=l&&r<=y){change_t(p,k);return ;}
push_down(p);
if(x<=mid) change(p<<1,l,mid,x,y,k);
if(y>mid) change(p<<1|1,mid+1,r,x,y,k);
maxn[p]=max(maxn[p<<1],maxn[p<<1|1]);
}
}tree; signed main(){
scanf("%lld%lld",&n,&m);
for(int i=1;i<=m;i++){
scanf("%lld%lld%lld",&in1,&in2,&in3);
a[i]=Node{in1,in2,in3};
v[in2].push_back(a[i]);
}
for(int i=1;i<=n;i++){
tree.change(1,1,n,i,i,max(tree.maxn[1],0ll));
for(auto it:v[i])
tree.change(1,1,n,it.l,i,it.a);
}
cout<<max(tree.maxn[1],0ll)<<'\n';
return 0;
}

Intervals 题解的更多相关文章

  1. 【LeetCode】Merge Intervals 题解 利用Comparator进行排序

    题目链接Merge Intervals /** * Definition for an interval. * public class Interval { * int start; * int e ...

  2. HDOJ1384 Intervals 题解

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1384 大意:有 \(n\) 个区间 \([a_i,b_i]\),每个区间有个权值 \(c_i\),找到 ...

  3. POJ1375:Intervals——题解

    http://poj.org/problem?id=1375 题目大意:有一盏灯,求每段被圆的投影所覆盖的区间. —————————————————————— 神题,卡精度,尝试用各种方法绕过精度都不 ...

  4. [Leetcode Week2]Merge Intervals

    Merge Intervals题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/merge-intervals/description/ Descript ...

  5. 算法与数据结构基础 - 排序(Sort)

    排序基础 排序方法分两大类,一类是比较排序,快速排序(Quick Sort).归并排序(Merge Sort).插入排序(Insertion Sort).选择排序(Selection Sort).希尔 ...

  6. 算法与数据结构基础 - 贪心(Greedy)

    贪心基础 贪心(Greedy)常用于解决最优问题,以期通过某种策略获得一系列局部最优解.从而求得整体最优解. 贪心从局部最优角度考虑,只适用于具备无后效性的问题,即某个状态以前的过程不影响以后的状态. ...

  7. [LeetCode]题解(python):056-Merge Intervals

    题目来源 https://leetcode.com/problems/merge-intervals/ Given a collection of intervals, merge all overl ...

  8. 【题解】【区间】【二分查找】【Leetcode】Insert Interval & Merge Intervals

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...

  9. LeetCode 题解 56. Merge Intervals

    题目大意:给出一组区间,合并他们. 首先是排序,首先看start,start小的在前面.start相同的话,end小的在前面. 排序以后,要合并了. 我自己的笨方法,说实在的问题真的很多.提交了好几次 ...

  10. leetcode个人题解——#56 Merge Intervals

    思路,先按照结构体中start进行排序,然后遍历比较前后项是否有重合. 第一次用到三参数形式的sort(),第三个参数的bool函数要写到类外才通过. /** * Definition for an ...

随机推荐

  1. 使用Ajax进行数据请求

    ​ 一.Ajax开源库有很多选择,大家可以根据需求自己选择 jQuery:jQuery是一个广泛应用的JavaScript库,它提供了简洁而强大的API来处理Ajax请求.通过$.ajax()方法或其 ...

  2. CentOS 7 搭建NFS服务器

    服务端安装 # 创建挂载目录 cd ~ cd data/ mkdir www-content cd www-content/ pwd # 安装软件 yum install nfs-utils yum ...

  3. 从零实现的Chrome扩展

    从零实现的Chrome扩展 Chrome扩展是一种可以在Chrome浏览器中添加新功能和修改浏览器行为的软件程序,例如我们常用的TamperMonkey.Proxy SwitchyOmega.AdGu ...

  4. 【调制解调】FM 调频

    说明 学习数字信号处理算法时整理的学习笔记.同系列文章目录可见 <DSP 学习之路>目录,代码已上传到 Github - ModulationAndDemodulation.本篇介绍 FM ...

  5. Rust 学习笔记:快速上手篇

    Rust 学习笔记:快速上手篇 这篇学习笔记将用于记录本人在快速上手 Rust 编程语言时所记录的学习心得与代码实例.为此,我会在本笔记库项目的Programming/LanguageStudy/目录 ...

  6. 通过Maxwell同步mariadb数据至kafka

    实验环境 本地虚拟机 maraidb 10.8.8 kafka 2.12-3.3.1 maxwell由容器部署 1 mariadb 1.1 配置log_bin 配置文件中加入如下内容 server-i ...

  7. debezium同步postgresql数据至kafka

    0 实验环境 全部部署于本地虚拟机 debezium docker部署 postgresql.kafka本机部署 1 postgresql 1.1 配置 设置postgres密码为123 仿照exam ...

  8. 论文解读(LightGCL)《LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation》

    Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:LightGCL: Simple Yet Effective Graph Contrastive Lear ...

  9. mysql拓展

    事务定义 就是将一组SQL语句放在同一批次内去执行 如果一个sql语句出错,则改批次内的所有sql都将被取消执行 (1)原子性 一个事务要么全部提交成功,要么全部失败回滚,不能只执行其中的一部分操作, ...

  10. Ubuntu20.04 下编译和运行 FreeSWITCH的问题汇总

    1. Ubuntu20.04 下编译和运行 FreeSWITCH的问题汇总 1.1. 环境 Ubuntu20.04.2 LTS (Linux 5.4.0-152-generic x86_64 GNU/ ...