Solution Set - 图上问题
CF360E
首先显然可以选择的边的权值一定会取端点值。事实上,第一个人经过的边选最小,第一个人不经过的边选最大,这样一定不劣。进一步,如果 \(s_1\) 到点 \(u\) 的距离小于等于 \(s_2\),则 \((u,v)\) 这条边应该取最小值。所以可以初始全部当作最大值,不断选择一条边修改,直到不能再修改。这时检查距离,比较即可。
CF280D
好像跟图论没什么关系,不过题解区一片模拟费用流……
考虑线段树维护,每个区间上记录选择 \(j\) 个段,且开头/结尾选/不选的最大值。具体来说,\(mx_{j,0/1/2/3}\) 分别表示选择 \(j\) 个段,开头结尾无限制/开头选,结尾无限制/开头无限制,结尾选/开头结尾都选的情况下,子段和的最大值。区间合并是容易的。时间复杂度 \(O(nk^2\log n)\),常数并不大。注意上面这个状态没有限制开头不选或者结尾不选,如果限制了转移需要写满 \(16\) 种,不限制的情况下可以减少到 \(8\) 种转移。
CF1062F
有向无环图没什么处理手段,考虑拓扑序。在拓扑排序的过程中,同时处于队列中的点一定互相不可达。所以做一遍拓扑排序,如果一个点出队的时候队列中还有另外两个点,则该点不够重要。如果一个点出队的时候队列中没有其他点了,那么这个点可以到达的所有点就是剩下还没有入队的点。剩下的一种情况是一个点 \(u\) 出队的时候队列中恰好还剩了一个点 \(v\),那么如果后面还有 \(u\) 不能到的点,就一定会有一个这样的点是 \(v\) 的后继,那么它的入度只能为 \(1\)。也就是说检查 \(v\) 的所有出边,如果有入度为 \(1\) 的点则 \(u\) 也直接不合法,否则也算出 \(u\) 能到达的点数。再在反图上做一遍,就可以得出每个可能合法的点能到达或能被到达的点数,即可统计答案。
CF235D
显然把期望拆成概率。只用对所有有序点对 \((u,v)\),求出删掉 \(u\) 的时候 \(v\) 和 \(u\) 仍然联通的概率,最后求和即可。如果 \(u,v\) 间的路径不经过环,点数为 \(len\),则概率就是 \(\frac{1}{len}\)(相当于 \(u\) 在这 \(len\) 个的排列中位于开头);如果 \(u,v\) 间的路径经过环,设有 \(len\) 个点必须经过,环的两侧分别有 \(x,y\) 个点,则容斥可得概率是 \(\frac{1}{len+x}+\frac{1}{len+y}-\frac{1}{len+x+y}\)。枚举点对计算即可。
CF1240F
问题相当于给边染色。差不超过 \(2\) 的限制看起来很宽松,所以猜测一定可以全部染色。因为太宽松不好处理,所以考虑拆点,把边 \((u,v)\) 换成 \((u,v+n)\),要求新图中每个点邻边的颜色出现次数的极差不超过 \(1\),最后合并 \(u\) 和 \(u+n\) 即可。得到的新图显然是一张二分图。
再考虑拆点,把度为 \(d=qk+r\) 的点拆成 \(q+1\) 个点,前 \(q\) 个点度为 \(k\),最后一个点度为 \(r\),原来的边随便分配到这些点上(注意这样拆完之后的点数是 \(O(m)\) 的)。要求每个点连出的边颜色互不相同即可。那么考虑一条边 \((u,v)\),随便选一个 \(u\) 还没用过的颜色 \(c_u\),一个 \(v\) 还没用过的颜色 \(c_v\)。如果 \(v\) 也没用过 \(c_u\) 就可以直接染色为 \(c_u\)。否则找到 \((v,w)\) 颜色为 \(c_u\),将其改为 \(c_v\)(边 \((u,v)\) 仍然染色 \(c_u\))。如果又有 \((w,x)\) 颜色为 \(c_v\),则将其改为 \(c_u\)。如此递归下去,最后一定成功,不然就表明选择的边成环了。如果这个环包含 \(u\) 就表明 \(u\) 已经连了颜色为 \(c_u\) 的边,否则就表明某个点连了两条颜色相同的边,总之是荒谬的。
CF1268D
用到强连通竞赛图的几个性质:(记点数为 \(n\ge 3\))
强连通竞赛图一定有哈密顿环。
反证法。假设没有,取出点数最多的环 \(p_1,p_2,\cdots,p_k,p_{k+1}=p_1(k\lt n)\)。考虑 \(u\notin \{p_1,\cdots,p_k\}\),若有 \(i\) 使得边 \((p_i,u),(u,p_{i+1})\in E\) ,则与最大性矛盾。所以对每个这样的 \(u\),要么 \(\forall i,(u,p_i)\in E\),要么 \(\forall i,(p_i,u)\in E\)。记 \(S=\{u\notin \{p_1,\cdots,p_k\}|(u,p_i)\in E,\forall i\}\),\(T=\{u\notin \{p_1,\cdots,p_k\}|(p_i,u)\in E,\forall i\}\),因为图是强连通的,且 \(k\lt n\),所以 \(S,T\neq \empty\)。同时一定存在 \(u\in T,v\in S\) 使 \((u,v)\in E\),否则 \(T\) 中的点无法到达 \(S\) 中的点。这时就发现 \(p_1,u,v,p_2,p_3,\cdots,p_k\) 是更大的环,矛盾。
如果 \(n\ge 4\),则可以删去一个点,使得剩下的图仍然是一个强连通竞赛图。
由上一个结论可以直接知道一个竞赛图强连通等价于有哈密顿环。设原图中的哈密顿环是 \(u_1,u_2,\cdots,u_n\),假如有 \(k\) 使得 \((u_k,u_{k+2})\in E\),则删掉 \(u_{k+1}\) 即可;否则,任何三个连续的点强连通,容易发现删掉任何点都仍然是强连通的。
如果一个竞赛图中所有点的出度从大到小排序为 \(d_1,d_2,\cdots d_n\),则图强连通等价于不存在 \(k\),使得 \(d_1+d_2+\cdots+d_k=C_{k}^2\)。
对于一个竞赛图,按照强连通分量缩点之后,显然会得到一个全序图。考虑这个全序图中最后一个分量,它满足命题中的等式。只有当这最后一个分量是整个图的时候,图才是强连通的。既得证。
回到原题。利用第三个结论,可以在 \(O(n^2\log n)\) 的时间判断不进行操作和操作一次的所有情况。
注意到,如果图缩点之后有至少三个分量,那么翻转一个中间的点的邻边就可以使图强连通。所以判断完 \(0,1\) 后剩下的情况一定只有两个强连通分量。而如果这两个分量中有一个大小至少为 \(4\),利用上面的第二个结论翻转一个点,借助第一个结论结论容易证明得到了一个强连通分量,所以这种情况也讨论过了。剩下的情况就是样例 \(2,3\)。
CF1148G
先来尝试证明题目中的“always exists”。考虑补图,那么目标转化为:找一个大小为 \(k\) 的点集,要么每个点所在的连通块大小均为 \(1\),要么均大于 \(1\)。那么,我们找一个最大的独立集 \(S\),如果大小大于等于 \(k\) 就成立了,否则,对于每个不在 \(S\) 中的点,一定和某个 \(S\) 中的点连边了。让每个 \(S\) 外的点恰好连一条边,也就是在每个 \(S\) 中的点上挂了若干个点,设挂的点数从大到小为 \(c_1,c_2,\cdots,c_t,t\lt k\)。注意到 \(2k\le n\),由抽屉原理可知 \(c_1\ge 3\)。我们只需要找到 \(a_1,a_2,\cdots,a_t\) 满足 \(\sum_{i=1}^ta_i=k,a_i\le c_i+1,a_i\neq 1\)。这是非常容易的:\(2,3,\cdots,c_1-1,(c_1-1)+2,\cdots,c_1-1+c_2,(c_1-1)+c_2+2,\cdots,c_2+\cdots+c_t\) 这些数中一定包含了 \(k\) 和 \(k-1\) 之一(注意 \(k\ge 3\)),取 \(a_1=c_1-1\) 或 \(c_1\) 即可。
或许不容易找到最大的独立集,但是在本题的条件下,不难找到一个极大的独立集。具体来说,我们依次尝试把每个数加入 \(S\)。这就要判断 \(S\) 中是否有与某个数互质的数。而利用莫比乌斯反演,容易计算出与某个数互质的数的个数。而对于极大的独立集,上面的证明当然也是成立的。
剩下的问题是,要判断不在 \(S\) 中的数和 \(S\) 中哪个数互质。注意到我们可以判断一个数是否与某一些数之一互质,所以单个询问可以二分,多个询问就可以整体二分。整体二分的实现是容易的。
时间复杂度 \(O(n\log n\times2^8)\),后面这个 \(2^8\) 是因为 \(10^7\) 内的数最多有 \(8\) 个质因数,而用莫比乌斯反演计算时只需要考虑无平方因子数。实际跑不满。
Solution Set - 图上问题的更多相关文章
- 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划
2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...
- yii2组件之多图上传插件FileInput的详细使用
作者:白狼 出处:http://www.manks.top/yii2_multiply_images.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...
- [python]沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上
将沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上 原理:python读取前一次处理完的计算5日后涨跌幅输出的csv文件 文件名前加"[paint]" 安照通达信的画图文件和板 ...
- matlab 将多个盒图放在一张图上
1.boxplot 将多个盒图放在一张图上 x1 = normrnd(5,1,100,1)';x2 = normrnd(6,1,200,1)';X = [x1 x2];G = [zeros(size( ...
- ajax 异步插入图片到数据库(多图上传)
额 大概就这么个样子...截个图 点浏览 选择几张图片 选择完了 确定一下 然后插入数据库 同时在页面中显示插入的图片,代码 也没啥.看下 index.php <html><hea ...
- iOS 使用AFN 进行单图和多图上传
图片上传时必要将图片进行压缩,不然会上传失败 1.单张图上传 AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManag ...
- PHP之:多图上传
撰写日期:2016-6-30 15:17:35 Thursday 参考 http://a3147972.blog.51cto.com/2366547/1381136 (08-05ThinkPHP+sw ...
- arcgis android 图上记录gps轨迹
原文 arcgis android 图上记录gps轨迹 public class MainActivity extends Activity { MapView mMapView; Location ...
- 微信jssdk,实现多图上传的一点心得
一.首先在common.js里封装一个函数,在需要调用jsSDK的页面引用此方法即可实现微信的信息配置function signatureJSSDK() { var url = window.loca ...
- JS案例之4——Ajax多图上传
近期项目中有好几次用到多图上传,第一次在项目中真正用到Ajax技术,稍微整理了下,贴个案例出来. 我们传统的做法是当用户提交一个表单时,就向web服务器端发送一个请求.服务器接受并处理传来的表单信息, ...
随机推荐
- node14.20.0安装pnpm5.15.0兼容
1,执行命令:npm install -g pnpm@5.15.0 2,设置淘宝镜像源: pnpm config set registry https://registry.npm.taobao.or ...
- 【Pavia】遥感图像数据集下载地址和读取数据集代码
[Pavia]遥感图像数据集下载地址和读取数据集代码 目录 [Pavia]遥感图像数据集下载地址和读取数据集代码 前言 Pavia数据集 Pavia数据集地址: Pavia数据集预览 PaviaU.m ...
- 可变形卷积系列(三) Deformable Kernels,创意满满的可变形卷积核 | ICLR 2020
论文提出可变形卷积核(DK)来自适应有效感受域,每次进行卷积操作时都从原卷积中采样出新卷积,是一种新颖的可变形卷积的形式,从实验来看,是之前方法的一种有力的补充. 来源:晓飞的算法工程笔记 公众号 ...
- KingbaseES V8R6 集群运维系列 -- trusted_server
案例说明: 在KingbaseES V8R3及V8R6早期的版本,对于读写分离的集群如果网关地址无法连通,将会导致整个集群关闭,数据库服务无法访问.在后期版本的改进中,降低了对网关的依赖性,当网关地址 ...
- Kingbase ES 自定义聚合函数和一次改写案例
文章概要: KES的SQL的语法暂时不兼容oracle的自定义聚合函数的创建语法和流程,但是可以使用KES已支持的语法改写. 本文整理和简单解析了自定义聚合函数的原理和解读了范例代码. 并根据客户代码 ...
- KingbaseES使用sys_backup.sh脚本init初始化配置文件常见错误处理
KingbaseES使用sys_backup.sh脚本init初始化配置文件常见错误处理: 一.sys_backup.sh脚本按照如下顺序寻找初始化配置文件: [kingbase@postgres ~ ...
- 【已解决】java.text.ParseException: Unparseable date
今天在工作的时候遇到一个问题,我的一个字段queryDate保存不了,总是null值: java.text.ParseException: Unparseable date 报错的原因是日期格式转换错 ...
- #分层图最短路,Dijkstra#洛谷 4568 [JLOI2011]飞行路线
题目 一个无向图,每条边都有花费,可以有\(k\)次挑选边去除花费的机会,问从指定起点到指定终点的最小花费 分析 考虑用分层最短路完成,也就是在同一层走需要花费,不同层走不用花费,最终走到最底层,然后 ...
- Python 元组完全指南1
元组用于在单个变量中存储多个项目. mytuple = ("apple", "banana", "cherry") 元组是 Python 中 ...
- 面试连环炮系列(二十️五):RocketMQ怎么保证消息不丢失
RocketMQ怎么保证消息不丢失? A. 从Producer的视角来看:如果消息未能正确的存储在MQ中,或者消费者未能正确的消费到这条消息,都是消息丢失. B. 从Broker的视角来看:如果消息已 ...