浅谈斜率优化DP
前言
考试 T2 出题人放了个树上斜率优化 DP,直接被同校 OIER 吊起来锤。
离 NOIP 还有不到一周,赶紧学一点。
引入
斜率
斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
斜率可以用来描述一个坡的倾斜程度,公式 \(k = \frac{\Delta y}{\Delta x}\)。
初中学过一元一次函数 \(y = kx + b\),这里的 \(k\) 就是这个函数表示的直线的斜率。
解决什么
一般对于形如 \(f[i] = \min(a[i] \times b[j] + c[i] + d[j])\) 这种类型的 DP 转移式子都可以用上斜率优化。
其中 \(b\) 要满足单调递增。
看到中间有一部分与 \(i,j\) 都有关,所以这个时候要用到斜率优化。
理解
下面来以一道题目为例进行讲解。
P3195 [HNOI2008] 玩具装箱
看完题目应该都可以想出来一个 \(O(n^2)\) 的 DP,那就是:
设 \(f[i]\) 表示考虑到第 \(i\) 个玩具所用的最小花费,\(sum[i]\) 为从 \(1\sim i\) 的玩具长度总和。
\]
我们尝试把这一堆东西分分类,把只有 \(i\) 的挪到一起,只有 \(j\) 的挪到一起,剩下的挪到中间。
得到:
\]
设 \(A=sum[i] + i, B = sum[j] - j - L - 1\)。
那么就是 :
\]
显然的,\(A^2\) 我们可以预处理,是已知的,由于前缀和,而且玩具长度至少为 \(1\),所以 \(2A\) 是严格单调递增的,\(B\) 数组我们也可以直接预处理。
\]
这个式子是把只与 \(j\) 有关的移到左边了,可以发现形式上是和 \(y = kx + b\) 一样的。
那么我们就可以把一个之前转移完成的状态看成是一个 \((B, f[j] + B^2)\) 的点,而 \(2A\) 就是经过他们的直线的斜率。
那么我们要求 \(f[i]\) 的话,就是求这个点和这个斜率为 \(2A\) 的直线的最大可能截距是多少。
于图像中
假设下面的三个点是我们待选的状态:

假设我们当前要求的斜率画出来是下面这样:

我们就从下往上,一点一点向上挪,直到碰到的第一个点,此时的截距一定最大。我们也能看出的确 \(C\) 点最优。
那么此时的 \(A\) 点好像没有什么用了,可以扔掉吗?
答案是可以,因为斜率是单调递增的,既然这次第一个碰不到 \(A\),那么后面肯定也不是第一个碰到。
但是我们如何做到最快找出呢?
队列维护

观察这张图片,假设里面的点都是之前转移完的状态。
比较 \(AE,AB\) 的斜率。
不难发现 \(AB\) 的斜率比 \(AE\) 小,想一下之前说的,如果拿一条直线去碰这个图形,从各个角度去碰,最外层的点会形成一个凸包,而这个凸包内的点,是无论如何都碰不到的。
这个我们可以用一个队列来维护一个下凸壳,也就是凸包的一部分。
然后根据上面说的,要是队列头的两个元素形成的直线斜率比当前的小,也可以直接弹出。
这样队列的队头元素就是我们要转移的值了。
code:
/*
* @Author: Aisaka_Taiga
* @Date: 2023-11-13 14:11:27
* @LastEditTime: 2023-11-13 15:09:40
* @LastEditors: Aisaka_Taiga
* @FilePath: \Desktop\P3195.cpp
* The heart is higher than the sky, and life is thinner than paper.
*/
#include <bits/stdc++.h>
#define pf(x) ((x) * (x))
#define int long long
#define DB double
#define N 1000100
using namespace std;
inline int read()
{
int x = 0, f = 1;
char c = getchar();
while(c < '0' || c > '9'){if(c == '-') f = -1; c = getchar();}
while(c <= '9' && c >= '0') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return x * f;
}
int n, L, q[N], c[N], f[N], sum[N], A[N], B[N];
inline int X(int x){return B[x];}
inline int Y(int x){return f[x] + pf(B[x]);}
inline DB xl(int i, int j){return (Y(i) - Y(j)) * 1.0 / (X(i) - X(j));}
signed main()
{
n = read(), L = read();
for(int i = 1; i <= n; i ++) c[i] = read();
for(int i = 1; i <= n; i ++)
{
sum[i] = sum[i - 1] + c[i];
B[i] = sum[i] + i + L + 1;
A[i] = sum[i] + i;
}
B[0] = L + 1;
int h = 1, t = 1;
for(int i = 1; i <= n; i ++)
{
while(h < t && xl(q[h], q[h + 1]) < 2 * A[i]) h ++;
int j = q[h];
f[i] = f[j] + pf(A[i] - B[j]);
while(h < t && xl(q[t - 1], i) < xl(q[t - 1], q[t])) t --;
q[++ t] = i;
}
cout << f[n] << endl;
return 0;
}
参考:https://www.cnblogs.com/terribleterrible/p/9669614.html
浅谈斜率优化DP的更多相关文章
- 斜率优化dp(POJ1180 Uva1451)
学这个斜率优化dp却找到这个真心容易出错的题目,其中要从n倒过来到1的确实没有想到,另外斜率优化dp的算法一开始看网上各种大牛博客自以为懂了,最后才发现是错了. 不过觉得看那些博客中都是用文字来描述, ...
- UVALive 4726 Average ——(斜率优化DP)
这是第一次写斜率优化DP= =.具体的做法参照周源论文<浅谈数形结合思想在信息学竞赛中的应用>.这里仅提供一下AC的代码. 有两点值得注意:1.我这个队列的front和back都是闭区间的 ...
- 浅谈状态压缩DP
浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
- HDU2829 Lawrence(斜率优化dp)
学了模板题之后上网搜下斜率优化dp的题目,然后就看到这道题,知道是斜率dp之后有思路就可以自己做不出来,要是不事先知道的话那就说不定了. 题意:给你n个数,一开始n个数相邻的数之间是被东西连着的,对于 ...
随机推荐
- 万字长文浅析配置对MySQL服务器的影响
有很多的服务器选项会影响这MySQL服务器的性能,比如内存中临时表的大小.排序缓冲区等.有些针对特定存储引擎(如InnoDB)的选项,也会对查询优化很有用. 调整服务器的配置从某种程度来说是一个影响全 ...
- Blazor实战——Known框架多表增删改查
多表增删改查示例 本章介绍学习多张表增.删.改.查功能如何实现,下面以销货出库单作为示例,该业务栏位如下: 销货出库单栏位 销货单号.销货日期.状态.客户.备注 销货出库单明细栏位 商品编码.商品名称 ...
- 从序号和确认号理解TCP三次握手
头部信息 TCP首部存储的数据和建立连接有关,具体每个字段的用途可以参考这一篇文章,其中序号和确认号决定了发送数据的内容. 头部中间部分"保留"和"窗口"中间是 ...
- 《深入理解Java虚拟机》笔记:垃圾收集算法和HotSpot的算法实现
一.垃圾收集算法 由于垃圾收集算法的实现涉及大量的程序细节,而且各个平台的虚拟机操作内存的方法又各不相同,因此本节不打算过多地讨论算法的实现,只是介绍几种算法的思想及其发展过程. 垃圾收集算法概要 1 ...
- 性能监控平台搭建(grafana+telegraf+influxdb) 及 配置 jmeter后端监听
搞性能测试,可以搭建Grafana+Telegraf+InfluxDB 监控平台,监控服务器资源使用率.jmeter性能测试结果等. telegraf: 是一个用 Go 编写的代理程序,可收集系统和服 ...
- 【技术积累】Linux中的命令行【理论篇】【七】
atrm命令 命令介绍 atrm命令是Linux系统中的一个命令行工具,用于取消或删除已经安排的at命令.at命令是一种用于在指定时间执行一次性任务的工具. 命令说明 atrm命令的语法如下: atr ...
- Electron-builder打包和自动更新
Electron-builder打包和自动更新 前言 文本主要讲述如何为 electron 打包出来软件配置安装引导和结合 github 的 release 配置自动更新. electron-buil ...
- elasticsearch中的数据类型:flattened和join
flattened:比如你有一个字段的值是一个json,这个json里面又有很多字段,你又不想一个一个的定义这些字段到mapping,就可以用flattened 直接动手:创建索引: PUT pers ...
- 4.4 C++ Boost 数据集序列化库
Boost 库是一个由C/C++语言的开发者创建并更新维护的开源类库,其提供了许多功能强大的程序库和工具,用于开发高质量.可移植.高效的C应用程序.Boost库可以作为标准C库的后备,通常被称为准标准 ...
- JOIN 关联表中 ON、WHERE 后面跟条件的区别
SQL中join连接查询时条件放在on后与where后的区别 数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. 在使用left jion时,on和wh ...