Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索

Similarities 相似度计算、语义匹配搜索工具包,实现了多种相似度计算、匹配搜索算法,支持文本、图像等。

1. 文本相似度计算(文本匹配)

  • 余弦相似(Cosine Similarity):两向量求余弦
  • 点积(Dot Product):两向量归一化后求内积
  • 汉明距离(Hamming Distance),编辑距离(Levenshtein Distance),欧氏距离(Euclidean Distance),曼哈顿距离(Manhattan Distance)等

2.图像相似度计算(图像匹配)

3.图文相似度计算

4.匹配搜索

  • SemanticSearch:向量相似检索,使用Cosine

    Similarty + topk高效计算,比一对一暴力计算快一个数量级

6.Demo展示

Compute similarity score Demo: https://huggingface.co/spaces/shibing624/text2vec

Semantic Search Demo: https://huggingface.co/spaces/shibing624/similarities

6.1 中文文本匹配模型评测结果

Model ATEC BQ LCQMC PAWSX STS-B Avg QPS
Word2Vec 20.00 31.49 59.46 2.57 55.78 33.86 10283
SBERT-multi 18.42 38.52 63.96 10.14 78.90 41.99 2371
Text2vec 31.93 42.67 70.16 17.21 79.30 48.25 2572

结果值使用spearman系数

Model:

  • Cilin
  • Hownet
  • SimHash
  • TFIDF
  • Install
pip3 install torch # conda install pytorch
pip3 install -U similarities

or

git clone https://github.com/shibing624/similarities.git
cd similarities
python3 setup.py install

7.使用场景推荐

7.1. 文本语义相似度计算

example: examples/text_similarity_demo.py

from similarities import Similarity

m = Similarity()
r = m.similarity('如何更换花呗绑定银行卡', '花呗更改绑定银行卡')
print(f"similarity score: {float(r)}") # similarity score: 0.855146050453186

Similarity的默认方法:

Similarity(corpus: Union[List[str], Dict[str, str]] = None,
model_name_or_path="shibing624/text2vec-base-chinese",
max_seq_length=128)
  • 返回值:余弦值score范围是[-1, 1],值越大越相似
  • corpus:搜索用的doc集,仅搜索时需要,输入格式:句子列表List[str]或者{corpus_id: sentence}的Dict[str, str]格式
  • model_name_or_path:模型名称或者模型路径,默认会从HF model hub下载并使用中文语义匹配模型shibing624/text2vec-base-chinese,如果是多语言景,可以替换为多语言匹配模型shibing624/text2vec-base-multilingual
  • max_seq_length:输入句子的最大长度,最大为匹配模型支持的最大长度,BERT系列是512

7.2. 文本语义匹配搜索

一般在文档候选集中找与query最相似的文本,常用于QA场景的问句相似匹配、文本相似检索等任务。

example: examples/text_semantic_search_demo.py

import sys

sys.path.append('..')
from similarities import Similarity #1.Compute cosine similarity between two sentences.
sentences = ['如何更换花呗绑定银行卡',
'花呗更改绑定银行卡']
corpus = [
'花呗更改绑定银行卡',
'我什么时候开通了花呗',
'俄罗斯警告乌克兰反对欧盟协议',
'暴风雨掩埋了东北部;新泽西16英寸的降雪',
'中央情报局局长访问以色列叙利亚会谈',
'人在巴基斯坦基地的炸弹袭击中丧生',
]
model = Similarity(model_name_or_path="shibing624/text2vec-base-chinese")
print(model)
similarity_score = model.similarity(sentences[0], sentences[1])
print(f"{sentences[0]} vs {sentences[1]}, score: {float(similarity_score):.4f}") print('-' * 50 + '\n')
#2.Compute similarity between two list
similarity_scores = model.similarity(sentences, corpus)
print(similarity_scores.numpy())
for i in range(len(sentences)):
for j in range(len(corpus)):
print(f"{sentences[i]} vs {corpus[j]}, score: {similarity_scores.numpy()[i][j]:.4f}") print('-' * 50 + '\n')
#3.Semantic Search
model.add_corpus(corpus)
res = model.most_similar(queries=sentences, topn=3)
print(res)
for q_id, c in res.items():
print('query:', sentences[q_id])
print("search top 3:")
for corpus_id, s in c.items():
print(f'\t{model.corpus[corpus_id]}: {s:.4f}')

output:

如何更换花呗绑定银行卡 vs 花呗更改绑定银行卡, score: 0.8551
... 如何更换花呗绑定银行卡 vs 花呗更改绑定银行卡, score: 0.8551
如何更换花呗绑定银行卡 vs 我什么时候开通了花呗, score: 0.7212
如何更换花呗绑定银行卡 vs 俄罗斯警告乌克兰反对欧盟协议, score: 0.1450
如何更换花呗绑定银行卡 vs 暴风雨掩埋了东北部;新泽西16英寸的降雪, score: 0.2167
如何更换花呗绑定银行卡 vs 中央情报局局长访问以色列叙利亚会谈, score: 0.2517
如何更换花呗绑定银行卡 vs 人在巴基斯坦基地的炸弹袭击中丧生, score: 0.0809
花呗更改绑定银行卡 vs 花呗更改绑定银行卡, score: 1.0000
花呗更改绑定银行卡 vs 我什么时候开通了花呗, score: 0.6807
花呗更改绑定银行卡 vs 俄罗斯警告乌克兰反对欧盟协议, score: 0.1714
花呗更改绑定银行卡 vs 暴风雨掩埋了东北部;新泽西16英寸的降雪, score: 0.2162
花呗更改绑定银行卡 vs 中央情报局局长访问以色列叙利亚会谈, score: 0.2728
花呗更改绑定银行卡 vs 人在巴基斯坦基地的炸弹袭击中丧生, score: 0.1279 query: 如何更换花呗绑定银行卡
search top 3:
花呗更改绑定银行卡: 0.8551
我什么时候开通了花呗: 0.7212
中央情报局局长访问以色列叙利亚会谈: 0.2517

余弦score的值范围[-1, 1],值越大,表示该query与corpus的文本越相似。

7.2.1 多语言文本语义相似度计算和匹配搜索

多语言:包括中、英、韩、日、德、意等多国语言

example: examples/text_semantic_search_multilingual_demo.py

7.3. 快速近似文本语义匹配搜索

支持Annoy、Hnswlib的近似语义匹配搜索,常用于百万数据集的匹配搜索任务。

example: examples/fast_text_semantic_search_demo.py

7.4. 基于字面的文本相似度计算和匹配搜索

支持同义词词林(Cilin)、知网Hownet、词向量(WordEmbedding)、Tfidf、SimHash、BM25等算法的相似度计算和字面匹配搜索,常用于文本匹配冷启动。

example: examples/literal_text_semantic_search_demo.py

from similarities import SimHashSimilarity, TfidfSimilarity, BM25Similarity, \
WordEmbeddingSimilarity, CilinSimilarity, HownetSimilarity text1 = "如何更换花呗绑定银行卡"
text2 = "花呗更改绑定银行卡" corpus = [
'花呗更改绑定银行卡',
'我什么时候开通了花呗',
'俄罗斯警告乌克兰反对欧盟协议',
'暴风雨掩埋了东北部;新泽西16英寸的降雪',
'中央情报局局长访问以色列叙利亚会谈',
'人在巴基斯坦基地的炸弹袭击中丧生',
] queries = [
'我的花呗开通了?',
'乌克兰被俄罗斯警告'
]
m = TfidfSimilarity()
print(text1, text2, ' sim score: ', m.similarity(text1, text2)) m.add_corpus(corpus)
res = m.most_similar(queries, topn=3)
print('sim search: ', res)
for q_id, c in res.items():
print('query:', queries[q_id])
print("search top 3:")
for corpus_id, s in c.items():
print(f'\t{m.corpus[corpus_id]}: {s:.4f}')

output:

如何更换花呗绑定银行卡 花呗更改绑定银行卡  sim score:  0.8203384355246909

sim search:  {0: {2: 0.9999999403953552, 1: 0.43930041790008545, 0: 0.0}, 1: {0: 0.7380483150482178, 1: 0.0, 2: 0.0}}
query: 我的花呗开通了?
search top 3:
我什么时候开通了花呗: 1.0000
花呗更改绑定银行卡: 0.4393
俄罗斯警告乌克兰反对欧盟协议: 0.0000
...

7.5. 图像相似度计算和匹配搜索

支持CLIP、pHash、SIFT等算法的图像相似度计算和匹配搜索。

example: examples/image_semantic_search_demo.py

import sys
import glob
from PIL import Image sys.path.append('..')
from similarities import ImageHashSimilarity, SiftSimilarity, ClipSimilarity def sim_and_search(m):
print(m)
# similarity
sim_scores = m.similarity(imgs1, imgs2)
print('sim scores: ', sim_scores)
for (idx, i), j in zip(enumerate(image_fps1), image_fps2):
s = sim_scores[idx] if isinstance(sim_scores, list) else sim_scores[idx][idx]
print(f"{i} vs {j}, score: {s:.4f}")
# search
m.add_corpus(corpus_imgs)
queries = imgs1
res = m.most_similar(queries, topn=3)
print('sim search: ', res)
for q_id, c in res.items():
print('query:', image_fps1[q_id])
print("search top 3:")
for corpus_id, s in c.items():
print(f'\t{m.corpus[corpus_id].filename}: {s:.4f}')
print('-' * 50 + '\n') image_fps1 = ['data/image1.png', 'data/image3.png']
image_fps2 = ['data/image12-like-image1.png', 'data/image10.png']
imgs1 = [Image.open(i) for i in image_fps1]
imgs2 = [Image.open(i) for i in image_fps2]
corpus_fps = glob.glob('data/*.jpg') + glob.glob('data/*.png')
corpus_imgs = [Image.open(i) for i in corpus_fps] #2.image and image similarity score
sim_and_search(ClipSimilarity()) # the best result
sim_and_search(ImageHashSimilarity(hash_function='phash'))
sim_and_search(SiftSimilarity())

output:

Similarity: ClipSimilarity, matching_model: CLIPModel
sim scores: tensor([[0.9580, 0.8654],
[0.6558, 0.6145]]) data/image1.png vs data/image12-like-image1.png, score: 0.9580
data/image3.png vs data/image10.png, score: 0.6145 sim search: {0: {6: 0.9999999403953552, 0: 0.9579654932022095, 4: 0.9326782822608948}, 1: {8: 0.9999997615814209, 4: 0.6729235649108887, 0: 0.6558331847190857}} query: data/image1.png
search top 3:
data/image1.png: 1.0000
data/image12-like-image1.png: 0.9580
data/image8-like-image1.png: 0.9327

7.6. 图文互搜

CLIP 模型不仅支持以图搜图,还支持中英文图文互搜:

import sys
import glob
from PIL import Image
sys.path.append('..')
from similarities import ImageHashSimilarity, SiftSimilarity, ClipSimilarity m = ClipSimilarity()
print(m)
#similarity score between text and image
image_fps = ['data/image3.png', # yellow flower image
'data/image1.png'] # tiger image
texts = ['a yellow flower', '老虎']
imgs = [Image.open(i) for i in image_fps]
sim_scores = m.similarity(imgs, texts) print('sim scores: ', sim_scores)
for (idx, i), j in zip(enumerate(image_fps), texts):
s = sim_scores[idx][idx]
print(f"{i} vs {j}, score: {s:.4f}")

output:

sim scores:  tensor([[0.3220, 0.2409],
[0.1677, 0.2959]])
data/image3.png vs a yellow flower, score: 0.3220
data/image1.png vs 老虎, score: 0.2112

参考链接:https://github.com/shibing624/similarities

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索的更多相关文章

  1. NLP 语义相似度计算 整理总结

    更新中 最近更新时间: 2019-12-02 16:11:11 写在前面: 本人是喜欢这个方向的学生一枚,写文的目的意在记录自己所学,梳理自己的思路,同时share给在这个方向上一起努力的同学.写得不 ...

  2. 孪生网络(Siamese Network)在句子语义相似度计算中的应用

    1,概述 在NLP中孪生网络基本是用来计算句子间的语义相似度的.其结构如下 在计算句子语义相似度的时候,都是以句子对的形式输入到网络中,孪生网络就是定义两个网络结构分别来表征句子对中的句子,然后通过曼 ...

  3. BERT实现QA中的问句语义相似度计算

    1. BERT 语义相似度 BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双 ...

  4. LSF-SCNN:一种基于 CNN 的短文本表达模型及相似度计算的全新优化模型

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language proc ...

  5. 3. 文本相似度计算-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 最近在学习文本相似度的计算,前面两篇文章 ...

  6. 海量数据相似度计算之simhash短文本查找

    在前一篇文章 <海量数据相似度计算之simhash和海明距离> 介绍了simhash的原理,大家应该感觉到了算法的魅力.但是随着业务的增长 simhash的数据也会暴增,如果一天100w, ...

  7. 4. 文本相似度计算-CNN-DSSM算法

    1. 文本相似度计算-文本向量化 2. 文本相似度计算-距离的度量 3. 文本相似度计算-DSSM算法 4. 文本相似度计算-CNN-DSSM算法 1. 前言 之前介绍了DSSM算法,它主要是用了DN ...

  8. 【codenet】代码相似度计算框架调研 -- 把内容与形式分开

    首发于我的gitpages博客 https://helenawang.github.io/2018/10/10/代码相似度计算框架调研 代码相似度计算框架调研 研究现状 代码相似度计算是一个已有40年 ...

  9. 转:Python 文本挖掘:使用gensim进行文本相似度计算

    Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理 ...

  10. word2vec词向量训练及中文文本类似度计算

    本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...

随机推荐

  1. 你真的了解token续期嘛?

    Spring Boot + Vue中的Token续签机制 在现代的全栈应用开发中,Spring Boot作为后端框架和Vue.js作为前端框架的组合非常流行.在这种架构中实现Token续签是保障应用安 ...

  2. MAC SAP for JAVA配置

    一.自定义应用程序服务器配置 conn = /H/<SAP路由器服务器地址(如果有)>/S/3299 /H/<SAP服务器地址>/S/32<Instance_no> ...

  3. 0x62 图论-最小生成树

    A题:走廊泼水节 链接:https://ac.nowcoder.com/acm/contest/1056/A 题目描述 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小 ...

  4. Codeforces Round #723 (Div. 2) (A~C题题解)

    补题链接:Here 1526A. Mean Inequality 给定 \(2 * n\) 个整数序列 \(a\),请按下列两个条件输出序列 \(b\) 序列是 \(a\) 序列的重排序 \(b_i ...

  5. 1 分钟在 Serverless 上部署现代化 Deno Web 应用

    作者 | 连喆人(掌上乾坤公司) 本文选自 "Serverless 函数计算征集令" 征文 利用 Serverless 的水平扩展与按量付费优势, 结合自定义运行时, 实现 Web ...

  6. 【QtJson】用Qt自带的QJson,直接一步到位封装和解析一个类的实例对象!

    之前貌似没有看过类似的代码 我们现在的要求就是直接在不知道类成员的情况下,把一个类丢进去就能生成一个Json字符串,也可以把一个字符串和一个类成员丢进去就能根据成员变量名匹配到元素并赋值,大概就这样 ...

  7. 关闭 cockpit 登陆提示

    sudo rm /etc/issue.d/cockpit.issue sudo rm /etc/motd.d/cockpit

  8. 【译】Visual Studio 2013 退役 :旧版本 Visual Studio 的支持提醒

    新年到了,也是提醒我们 Visual Studio 支持生命周期中即将到来的日期的好时机.对 Visual Studio 2013 的支持将于今年4月9日结束.如果您使用的是旧版本的Visual St ...

  9. 【ThreadX-GUIX】Azure RTOS GUIX和Azure RTOS GUIX Studio概述

    Azure GUIX嵌入式GUI是Microsoft的高级工业级GUI解决方案,专门针对深度嵌入式,实时和IoT应用程序而设计.Microsoft还提供了名为Azure RTOS GUIX Studi ...

  10. java - 字节流读取文件

    package stream; import java.io.*; public class InputStreamReaderString { public static void main(Str ...