Item 2: Follow the PEP 8 Style Guide

Naming

Naming
functions, variables, attributes lowercase_underscore
protected instance attributes _leading_underscore
private instance attributes __double_leading_underscore
classes, exceptions CapitalizedWord
module-level constants ALL_CAPS

Expressions and Statements

Always use absolute names for modules when importing them, not names relative to the current module's own path.

# not good
import foo
foo.bar() # good
from foo import bar
bar()

Item 3: Know the Differences Between str and unicode

In Python2, there are two types that represent sequences of characters: str and unicode. Instances of str contain raw 8-bit values. Instances of unicode contain Unicode characters.

The most common encoding to represent Unicode characters as binary data is UTF-8. Unicode instance in Python 2 do not have an associated binary encoding. To convert Unicode characters to binary data, you must use the encode method. To convert binary data to Unicode characters, you must use the decode method.

The core of your program should use Unicode character type (unicode in Python 2) and should not assume anything about character encodings. This approach allows you to be very accepting of alternative text encoding while being strict about your output text encoding.

def to_unicode(unicode_or_str):
if isinstance(unicode_or_str, str):
value = unicode_or_str.decode('utf-8')
else:
value = unicode_or_str
return value # Instance of unicode def to_str(unicode_or_str):
if isinstance(unicode_or_str, unicode):
value = unicode_or_str.encode('utf-8')
else:
value = unicode_or_str
return value # Instance of str

In Python 2, file operations default to binary encoding. But still always open file using a binary mode (like 'rb' or 'wb').

Item 4: Write Helper Functions Instead of Complex Expressions

Python's syntax makes it all too easy to write single-line expressions that are overly complicated and difficult to read.

Move complex expressions into helper functions, especially if you need to use the same logic repeatedlly.

The if/else expression provides a more readable alternative to using Boolean operators like or and and in expressions.

from urllib.parse import parse_qs
my_values = parse_qs('red=5&blue=0&green=',
keep_blank_values=True)
print(repr(my_values)) >>>
{'red': [''], 'green': [''], 'blue': ['']} # just use get method
print('Red: ', my_values.get('red'))
print('Green: ', my_values.get('green'))
print('Opacity: ', my_values.get('opacity')) >>>
Red: ['']
Green: ['']
Opacity: None # what about set a default of 0, use or operator
red = int(my_values.get('red', [''])[0] or 0)
green = int(my_values.get('green', [''])[0] or 0)
opacity = int(my_values.get('opacity', [''])[0] or 0) # use if/else expression
red = my_values.get('red')
red = int(red[0]) if red[0] else 0 # ues if/else statement
green = my_values.get('green')
if green[0]:
green = int(green[0])
else:
green = 0 # helper function, make sense
def get_first_int(values, key, default=0):
found = values.get(key, [''])
if found[0]:
found = int(found[0])
else:
found = default
return found green = get_first_int(my_values, 'green')

Item 5: Know How to Slice Sequence

lst = [1, 2, 3]
first_twenty_items = lst[:20]
last_twenty_items = lst[-20:] lst[20] >>>
IndexError: list index out of range from copy import copy, deepcopy # lst[-0:] equal to copy(lst), same as lst[:] lst = [1, 2, 3, [4, 5]]
a = copy(lst)
b = deepcopy(lst) lst[-1].append(6)
lst.append(7) print lst
print a
print b >>>
[1, 2, 3, [4, 5, 6], 7]
[1, 2, 3, [4, 5, 6]]
[1, 2, 3, [4, 5]] lst = [1, 2, 3, 4]
lst[1:] = [3]
print lst >>>
[1, 3]

Item 6: Avoid Using start, end, and stride in a Single Slice

a = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
odds = a[::2]
evens = a[1::2]
print(odds)
print(evens) >>>
['red', 'yellow', 'blue']
['orange', 'green', 'purple'] # reverse a byte string, but break for unicode
x = b'mongoose'
y = x[::-1]
print(y) >>>
b'esoognom' a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
a[::2] # ['a', 'c', 'e', 'g']
a[::-2] # ['h', 'f', 'd', 'b']
a[2::2] # ['c', 'e', 'g']
a[-2::-2] # ['g', 'e', 'c', 'a']
a[-2:2:-2] # ['g', 'e']
a[2:2:-2] # []

Specifying start, end, and stride in a slice can be extremely confusing. Avoid using them together in a single slice.

Item 7: Use List Comprehensions Instead of map and filter

a = [1,2,3,4,55,6,7,7,8,9]

# clear
even_squares = [x**2 for x in a if x % 2 == 0] # sucks
alt = map(lambda x: x**2, filter(lambda x: x % 2 == 0, a)) assert even_squares == list(alt)

Item 8: Avoid More Than Two Expressions in List Comprehensions

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [x for row in matrix for x in row]
print flat >>>
[1, 2, 3, 4, 5, 6, 7, 8, 9] squared = [[x**2 for x in row] for row in matrix]
print squared >>>
[[1, 4, 9], [16, 25, 36], [49, 64, 81]] my_lists = [
[[1, 2, 3], [4, 5, 6]],
#...
] # not good
flat = [x for sublist1 in my_lists
for sublist2 in sublist1
for x in sublist2] # clear
flat = []
for sublist1 in my_lists:
for sublist2 in sublist1:
flat.extend(sublist2)

List comprehensions with more than two expressions are very difficult to read and should be avoided.

Item 9: Consider Generator Expressions for Large Comprehensions

Generator expressions avoid memory issues by producing outputs one at a time as an iterator.

Item 10: Prefer enumerate Over range

flavor_list = ['vanilla', 'chocolate', 'pecan', 'strawberry']

# usually
for i in range(len(flavor_list)):
flavor = flavor_list[i]
print('%d: %s' % (i + 1, flavor)) # enumerate
for i, flavor in enumerate(flavor_list):
print('%d: %s' % (i + 1, flavor)) # specify which enumerate should begin count
for i, flavor in enumerate(flavor_list, 1):
print('%d: %s' % (i, flavor))

Item 11: Use zip to Process Iterators in Parallel

names = ['Cecilia', 'Lise', 'Marie']
letters = [len(n) for n in names] # usually
longest_name = None
max_letters = 0 for i in range(len(names)):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count print(longest_name) # using enumerate
for i, name in enumerate(names):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count # using zip
for name, count in zip(names, letters):
if count > max_letters:
longest_name = name
max_letters = count

In Python 2, use izip from the itertools built-in module when zip very large iterators.

If the lengths tht lists you want to zip aren't equal, use izip_longest.

Item 12: Avoid else Blocks After for and while Loops

Just Avoid use it.

Item 13: Take Advantage of Each Block in try/except/else/finally

Else Blocks

When the try block doesn't raise an exception, the else block will run. The else block helps you minimize the amount of code in the try block and improves readability.

def load_json_key(data, key):
try:
result_dict = json.loads(data) # May raise ValueError
except ValueError as e:
raise KeyError from e:
else:
return result_dict[key] # May raise KeyError

The else clause ensure that what follows the try/except is visually distinguished from the except block. This makes the exception propagation behavior clear.

The try/finally compound statement lets you run cleanup code regardless of whether exceptions were raised in the try block.

The else block helps you minimize the amount of code in try blocks and visually distinguish the success case from the try/except blocks.

An else block can be used to perform additional actions after a successful try block but before common cleanup in a finally block.

Effective Python2 读书笔记1的更多相关文章

  1. Effective Python2 读书笔记3

    Item 22: Prefer Helper Classes Over Bookkeeping with Dictionaries and Tuples For example, say you wa ...

  2. Effective Python2 读书笔记2

    Item 14: Prefer Exceptions to Returning None Functions that returns None to indicate special meaning ...

  3. Effective STL 读书笔记

    Effective STL 读书笔记 标签(空格分隔): 未分类 慎重选择容器类型 标准STL序列容器: vector.string.deque和list(双向列表). 标准STL管理容器: set. ...

  4. Effective STL读书笔记

    Effective STL 读书笔记 本篇文字用于总结在阅读<Effective STL>时的笔记心得,只记录书上描写的,但自己尚未熟练掌握的知识点,不记录通用.常识类的知识点. STL按 ...

  5. effective c++读书笔记(一)

    很早之前就听过这本书,找工作之前读一读.看了几页,个人感觉实在是生涩难懂,非常不符合中国人的思维方式.之前也有博主做过笔记,我来补充一些自己的理解. 我看有人记了笔记,还不错:http://www.3 ...

  6. Effective Java读书笔记完结啦

    Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...

  7. Effective java读书笔记

    2015年进步很小,看的书也不是很多,感觉自己都要废了,2016是沉淀的一年,在这一年中要不断学习.看书,努力提升自己 计在16年要看12本书,主要涉及java基础.Spring研究.java并发.J ...

  8. Effective Objective-C 读书笔记

    一本不错的书,给出了52条建议来优化程序的性能,对初学者有不错的指导作用,但是对高级阶段的程序员可能帮助不是很大.这里贴出部分笔记: 第2条: 使用#improt导入头文件会把头文件的内容全部暴露到目 ...

  9. 【Effective C++读书笔记】序

    C++ 是一个难学易用的语言! [C++为什么难学?] C++的难学,不仅在其广博的语法,以及语法背后的语义,以及语义背后的深层思维,以及深层思维背后的对象模型: C++的难学还在于它提供了四种不同而 ...

随机推荐

  1. JAVA格物致知基础篇:你所不知道的返回码

    上篇我们主要讲解利用Jersey组件如何来写一个能保证基本运行的Rest Service, 之所以说能够基本运行是因为接口暴露及其简易,一旦遇到其他的情况了,就无法正确的处理我们的请求.同时,这个接口 ...

  2. jsp response对象

    所属接口:javax.servlet.http.HttpServletResponse,其父接口是ServletResponse,而且 ServletResponse也现在只有唯一一个HttpServ ...

  3. 深入理解Java:内部类

    什么是内部类? 内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能使用public ...

  4. JS组件系列——基于Bootstrap Ace模板的菜单和Tab页效果分享(你值得拥有)

    前言:最近园子里多了许多谈语言.谈环境.谈逼格(格局)的文章,看看笑笑过后,殊不知其实都是然并卵.提升自己的技术才是王道.之前博主分享过多篇bootstrap组件的文章,引起了很多园友的关注和支持,看 ...

  5. 基于Nginx dyups模块的站点动态上下线并实现简单服务治理

    简介 今天主要讨论一下,对于分布式服务,站点如何平滑的上下线问题. 分布式服务 在分布式服务下,我们会用nginx做负载均衡, 业务站点访问某服务站点的时候, 统一走nginx, 然后nginx根据一 ...

  6. 使用对话框 —— Dialog

      对话框就是一般的弹出窗口,主要用来提示用户,和用户交互.   创建Activity对话框 使用Activity模拟对话框.这个比较简单,主要是使用Activity自带的Dialog主题.   创建 ...

  7. Sniffer的完整代码,基于winpcap抓包统计吞吐量

    using System; using System.Net; using System.Net.Sockets; using System.Net.NetworkInformation; using ...

  8. 《Java EE 开发技术与案例教程》 这是一本好书啊:简洁精辟(相见恨晚)

    第一章:Java EE 概述 1.get:JPA:Java Persistence API, 数据持久化API: JPA是一种ORM规范,它的实现实例:Hibernate.mybatis 2.Web ...

  9. memcached

    Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached ...

  10. C#-WinForm-MDI窗体容器、权限设置

    MDI窗体容器 - 放窗体的容器 窗体时顶级控件,是不允许放到其他的控件或窗体中的 (李献策lxc) 窗体属性中有一个属性:IsMdiContainer - 确定该窗体是否是MDI容器 在窗体中放一个 ...