Effective Python2 读书笔记1
Item 2: Follow the PEP 8 Style Guide
Naming
functions, variables, attributes | lowercase_underscore |
protected instance attributes | _leading_underscore |
private instance attributes | __double_leading_underscore |
classes, exceptions | CapitalizedWord |
module-level constants | ALL_CAPS |
Expressions and Statements
Always use absolute names for modules when importing them, not names relative to the current module's own path.
# not good
import foo
foo.bar() # good
from foo import bar
bar()
Item 3: Know the Differences Between str and unicode
In Python2, there are two types that represent sequences of characters: str and unicode. Instances of str contain raw 8-bit values. Instances of unicode contain Unicode characters.
The most common encoding to represent Unicode characters as binary data is UTF-8. Unicode instance in Python 2 do not have an associated binary encoding. To convert Unicode characters to binary data, you must use the encode method. To convert binary data to Unicode characters, you must use the decode method.
The core of your program should use Unicode character type (unicode in Python 2) and should not assume anything about character encodings. This approach allows you to be very accepting of alternative text encoding while being strict about your output text encoding.
def to_unicode(unicode_or_str):
if isinstance(unicode_or_str, str):
value = unicode_or_str.decode('utf-8')
else:
value = unicode_or_str
return value # Instance of unicode def to_str(unicode_or_str):
if isinstance(unicode_or_str, unicode):
value = unicode_or_str.encode('utf-8')
else:
value = unicode_or_str
return value # Instance of str
In Python 2, file operations default to binary encoding. But still always open file using a binary mode (like 'rb' or 'wb').
Item 4: Write Helper Functions Instead of Complex Expressions
Python's syntax makes it all too easy to write single-line expressions that are overly complicated and difficult to read.
Move complex expressions into helper functions, especially if you need to use the same logic repeatedlly.
The if/else expression provides a more readable alternative to using Boolean operators like or and and in expressions.
from urllib.parse import parse_qs
my_values = parse_qs('red=5&blue=0&green=',
keep_blank_values=True)
print(repr(my_values)) >>>
{'red': [''], 'green': [''], 'blue': ['']} # just use get method
print('Red: ', my_values.get('red'))
print('Green: ', my_values.get('green'))
print('Opacity: ', my_values.get('opacity')) >>>
Red: ['']
Green: ['']
Opacity: None # what about set a default of 0, use or operator
red = int(my_values.get('red', [''])[0] or 0)
green = int(my_values.get('green', [''])[0] or 0)
opacity = int(my_values.get('opacity', [''])[0] or 0) # use if/else expression
red = my_values.get('red')
red = int(red[0]) if red[0] else 0 # ues if/else statement
green = my_values.get('green')
if green[0]:
green = int(green[0])
else:
green = 0 # helper function, make sense
def get_first_int(values, key, default=0):
found = values.get(key, [''])
if found[0]:
found = int(found[0])
else:
found = default
return found green = get_first_int(my_values, 'green')
Item 5: Know How to Slice Sequence
lst = [1, 2, 3]
first_twenty_items = lst[:20]
last_twenty_items = lst[-20:] lst[20] >>>
IndexError: list index out of range from copy import copy, deepcopy # lst[-0:] equal to copy(lst), same as lst[:] lst = [1, 2, 3, [4, 5]]
a = copy(lst)
b = deepcopy(lst) lst[-1].append(6)
lst.append(7) print lst
print a
print b >>>
[1, 2, 3, [4, 5, 6], 7]
[1, 2, 3, [4, 5, 6]]
[1, 2, 3, [4, 5]] lst = [1, 2, 3, 4]
lst[1:] = [3]
print lst >>>
[1, 3]
Item 6: Avoid Using start, end, and stride in a Single Slice
a = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
odds = a[::2]
evens = a[1::2]
print(odds)
print(evens) >>>
['red', 'yellow', 'blue']
['orange', 'green', 'purple'] # reverse a byte string, but break for unicode
x = b'mongoose'
y = x[::-1]
print(y) >>>
b'esoognom' a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
a[::2] # ['a', 'c', 'e', 'g']
a[::-2] # ['h', 'f', 'd', 'b']
a[2::2] # ['c', 'e', 'g']
a[-2::-2] # ['g', 'e', 'c', 'a']
a[-2:2:-2] # ['g', 'e']
a[2:2:-2] # []
Specifying start, end, and stride in a slice can be extremely confusing. Avoid using them together in a single slice.
Item 7: Use List Comprehensions Instead of map and filter
a = [1,2,3,4,55,6,7,7,8,9] # clear
even_squares = [x**2 for x in a if x % 2 == 0] # sucks
alt = map(lambda x: x**2, filter(lambda x: x % 2 == 0, a)) assert even_squares == list(alt)
Item 8: Avoid More Than Two Expressions in List Comprehensions
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [x for row in matrix for x in row]
print flat >>>
[1, 2, 3, 4, 5, 6, 7, 8, 9] squared = [[x**2 for x in row] for row in matrix]
print squared >>>
[[1, 4, 9], [16, 25, 36], [49, 64, 81]] my_lists = [
[[1, 2, 3], [4, 5, 6]],
#...
] # not good
flat = [x for sublist1 in my_lists
for sublist2 in sublist1
for x in sublist2] # clear
flat = []
for sublist1 in my_lists:
for sublist2 in sublist1:
flat.extend(sublist2)
List comprehensions with more than two expressions are very difficult to read and should be avoided.
Item 9: Consider Generator Expressions for Large Comprehensions
Generator expressions avoid memory issues by producing outputs one at a time as an iterator.
Item 10: Prefer enumerate Over range
flavor_list = ['vanilla', 'chocolate', 'pecan', 'strawberry'] # usually
for i in range(len(flavor_list)):
flavor = flavor_list[i]
print('%d: %s' % (i + 1, flavor)) # enumerate
for i, flavor in enumerate(flavor_list):
print('%d: %s' % (i + 1, flavor)) # specify which enumerate should begin count
for i, flavor in enumerate(flavor_list, 1):
print('%d: %s' % (i, flavor))
Item 11: Use zip to Process Iterators in Parallel
names = ['Cecilia', 'Lise', 'Marie']
letters = [len(n) for n in names] # usually
longest_name = None
max_letters = 0 for i in range(len(names)):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count print(longest_name) # using enumerate
for i, name in enumerate(names):
count = letters[i]
if count > max_letters:
longest_name = names[i]
max_letters = count # using zip
for name, count in zip(names, letters):
if count > max_letters:
longest_name = name
max_letters = count
In Python 2, use izip from the itertools built-in module when zip very large iterators.
If the lengths tht lists you want to zip aren't equal, use izip_longest.
Item 12: Avoid else Blocks After for and while Loops
Just Avoid use it.
Item 13: Take Advantage of Each Block in try/except/else/finally
Else Blocks
When the try block doesn't raise an exception, the else block will run. The else block helps you minimize the amount of code in the try block and improves readability.
def load_json_key(data, key):
try:
result_dict = json.loads(data) # May raise ValueError
except ValueError as e:
raise KeyError from e:
else:
return result_dict[key] # May raise KeyError
The else clause ensure that what follows the try/except is visually distinguished from the except block. This makes the exception propagation behavior clear.
The try/finally compound statement lets you run cleanup code regardless of whether exceptions were raised in the try block.
The else block helps you minimize the amount of code in try blocks and visually distinguish the success case from the try/except blocks.
An else block can be used to perform additional actions after a successful try block but before common cleanup in a finally block.
Effective Python2 读书笔记1的更多相关文章
- Effective Python2 读书笔记3
Item 22: Prefer Helper Classes Over Bookkeeping with Dictionaries and Tuples For example, say you wa ...
- Effective Python2 读书笔记2
Item 14: Prefer Exceptions to Returning None Functions that returns None to indicate special meaning ...
- Effective STL 读书笔记
Effective STL 读书笔记 标签(空格分隔): 未分类 慎重选择容器类型 标准STL序列容器: vector.string.deque和list(双向列表). 标准STL管理容器: set. ...
- Effective STL读书笔记
Effective STL 读书笔记 本篇文字用于总结在阅读<Effective STL>时的笔记心得,只记录书上描写的,但自己尚未熟练掌握的知识点,不记录通用.常识类的知识点. STL按 ...
- effective c++读书笔记(一)
很早之前就听过这本书,找工作之前读一读.看了几页,个人感觉实在是生涩难懂,非常不符合中国人的思维方式.之前也有博主做过笔记,我来补充一些自己的理解. 我看有人记了笔记,还不错:http://www.3 ...
- Effective Java读书笔记完结啦
Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...
- Effective java读书笔记
2015年进步很小,看的书也不是很多,感觉自己都要废了,2016是沉淀的一年,在这一年中要不断学习.看书,努力提升自己 计在16年要看12本书,主要涉及java基础.Spring研究.java并发.J ...
- Effective Objective-C 读书笔记
一本不错的书,给出了52条建议来优化程序的性能,对初学者有不错的指导作用,但是对高级阶段的程序员可能帮助不是很大.这里贴出部分笔记: 第2条: 使用#improt导入头文件会把头文件的内容全部暴露到目 ...
- 【Effective C++读书笔记】序
C++ 是一个难学易用的语言! [C++为什么难学?] C++的难学,不仅在其广博的语法,以及语法背后的语义,以及语义背后的深层思维,以及深层思维背后的对象模型: C++的难学还在于它提供了四种不同而 ...
随机推荐
- iOS——学习网址收集+如何提高iOS开发技能
1 一个比系统自带的终端好用的软件:http://www.iterm2.com 2 学习和遇到技术问题可以去的网站: CocoaChina http://developer.cocoachi ...
- 利用百度API Store接口进行火车票查询
火车票查询 项目源码下载链接: Github:https://github.com/VincentWYJ/TrainTicketQuery 博客文件:http://files.cnblogs.com/ ...
- vNext之旅(2):net451、dotnet5.4、dnx451、dnxcore50都是什么鬼
继上次"vNext之旅(1):从概念和基础开始"之后再次学习vNext重新遇到了弄不懂的事情,花了一些时间学习,今天来分享一下,为后人节省些时间. 起因 在用vNext造轮子--框 ...
- DbUtility v3 背后的故事
DbUtility v3 背后的故事 时间 DbUtility v3构思了差不多大半年,真正开发到第一个版本发布到NuGet却只花了50天.中途大量时间在完善 Jumony 3,只有三周来开发DbUt ...
- Css--深入学习之切角
本文是作者从别的网站和文章学习了解的知识,简单做了个笔记,想要学习更多的可以参考这里:[css进阶]伪元素的妙用--单标签之美,奇思妙想 带切角的矩形: 该图来源于(奇思妙想) Css代码: .not ...
- 创建一个新的Activity
1.创建一个类继承Activity类,并创建对应的布局文件,在onCreate方法中加载该布局. 2.在AndroidManifest.xml声明该组件 注:如果想配置一个activity在桌面上有该 ...
- apt-get 相關設定
/etc/apt/apt.conf.d/01proxy 若加了以下這行,則 apt-get 都會透過下方網址get Acquire::http::Proxy "http://aptcache ...
- Ubuntu 安裝 嘸蝦米 輸入法
O S : 14.04.1-Ubuntu 加入fcitx開發團隊的repository: sudo add-apt-repository ppa:fcitx-team/nightly sudo apt ...
- [转]Struts2理解--动态方法和method属性及通配符_默认Action
众所周知,默认条件下,在浏览器输入indexAction!execute.action,便会执行indexAction类里的execute方法,这样虽然方便,但可能带来安全隐患,通过url可以执行Ac ...
- OC中的@property详解
简介: @property 生成了变量的get set 方法,同时指定了变量名称. 例如@property (nonatomic,strong) NSString *name;表示生成了_name私有 ...