bzoj3629
dfs
跟上道题很像有木有
同样地,我们暴力枚举约数
根据约数和公式,得出$S=\prod_{i=1}^{n}{(1+p+p^{2}+...+p^{a_{i}})}$
所以每次我们暴力枚举是哪个约数,次数是多少,然后爆搜
如果剩下的约数和$S-1$是质数,那么说明约数只剩下一个大质数,直接统计答案结束即可
因为一个数不可能大于自己的约数和,所以大于$sqrt(S)$的约数只能有一个
#include<bits/stdc++.h>
using namespace std;
const int N = 5e4 + ;
int s, sqrts;
int p[N], mark[N], ans[N << ];
void shaker() {
for(int i = ; i < N; ++i) {
if(!mark[i]) {
p[++p[]] = i;
}
for(int j = ; j <= p[] && i * p[j] < N; ++j) {
mark[i * p[j]] = ;
if(i % p[j] == ) {
break;
}
}
}
}
bool judge(int x) {
if(x == ) {
return ;
}
if(x < N) {
return !mark[x];
}
for(int i = ; p[i] * p[i] <= x; ++i) {
if(x % p[i] == ) {
return ;
}
}
return ;
}
void dfs(int last, int tot, int sum) {
if(tot == ) {
ans[++ans[]] = sum;
return;
}
if(tot - > sqrts && judge(tot - )) {
ans[++ans[]] = sum * (tot - );
}
for(int i = last + ; p[i] <= sqrts; ++i) {
int t = p[i], all = ;
for(int j = ; all + t <= tot; ++j) {
all += t;
if(tot % all == ) {
dfs(i, tot / all, sum * t);
}
t *= p[i];
}
}
}
int main() {
shaker();
while(scanf("%d", &s) != EOF) {
ans[] = ;
sqrts = sqrt(s);
dfs(, s, );
sort(ans + , ans + ans[] + );
printf("%d\n", ans[]);
for(int i = ; i < ans[]; ++i) {
printf("%d ", ans[i]);
}
if(ans[]) {
printf("%d\n", ans[ans[]]);
}
}
return ;
}
bzoj3629的更多相关文章
- bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...
- BZOJ3629(JLOI2014)聪明的燕姿
(⊙﹏⊙)我交了好久,有坑啊...(如果没有匹配的话,即输出0种情况要记得换行...) 就是搜索,加上一点数论,并不太难... #include<cstdio> #include<c ...
- bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...
- 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)
传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- bzoj3629 [JLOI2014]聪明的燕姿——DFS+约数和定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 扫除了一个知识盲点:约数和定理 约数和定理: 对于一个大于1正整数n可以分解质因数:n ...
- [转载]hzwer的bzoj题单
counter: 664BZOJ1601 BZOJ1003 BZOJ1002 BZOJ1192 BZOJ1303 BZOJ1270 BZOJ3039 BZOJ1191 BZOJ1059 BZOJ120 ...
- OI刷题录——hahalidaxin
16-3-25 —— bzoj 2049 [Sdoi2008]Cave 洞穴勘测:LCT入门 bzoj 2002 [Hnoi2010]Bounce 弹飞绵羊:LCT Tsinsen A1303. t ...
- BZOJ刷题列表【转载于hzwer】
沿着黄学长的步伐~~ 红色为已刷,黑色为未刷,看我多久能搞完吧... Update on 7.26 :之前咕了好久...(足见博主的flag是多么emmm......)这几天开始会抽时间刷的,每天几道 ...
随机推荐
- 研究下JavaScript中的Rest參数和參数默认值
研究下JavaScript中的Rest參数和參数默认值 本文将讨论使 JavaScript 函数更有表现力的两个特性:Rest 參数和參数默认值. Rest 參数 通常,我们须要创建一个可变參数的函数 ...
- DataGrid绑定Dictionary问题
问题] 在最近的项目中使用DataGrid的DataGridCheckBoxColumn绑定了后台TagModel类的IsSelected字段,数据源是TagModel类型的Dictionary,运行 ...
- Android Apk包下查看 sha1
用keytool工具查看sha1,格式如下:keytool -printcert -file Urovo.RSA文件路径(APK解压后在Meta-INF文件夹下)
- 利用python进行数据分析之pandas入门
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...
- 以python理解Linux的IO多路复用,select、poll、epoll
题外话 之前在看Unix环境高级编程的时候,看完高级IO那一章,感觉自己萌萌哒,0.0 ,有点囫囵吞枣的感觉,之后翻了几篇博客,从纯系统的角度理解,稍微有了点概念,以这两篇为例,可以以后参考: htt ...
- EasyNVR无插件流媒体服务器前端技术防止重复提交的方法
现在随着接触EasyNVR时间越来越长,越发的觉得EasyNVR真的是一个"神器".从功能上来说自身不仅可以拉出来使用(具体功能搜索EasyNVR一定有惊喜!),也可以作为设备端与 ...
- 如何解决安装好的google浏览器打不开网页的问题?
1.Google浏览器右上角,三个点,点击一下, 2.点击设置 3.在"搜索引擎"这一栏,选择'管理搜索引擎',右边的倒三角,进入选择界面 4.在其他搜索引擎中选择"百度 ...
- 扩容数据盘_Linux
扩容数据盘_Linux_扩容云盘_云盘_用户指南_云服务器 ECS-阿里云 https://help.aliyun.com/document_detail/25452.html 磁盘扩容付费后: 在控 ...
- packages/wepy-web/src/wx.js 分析storage 的加载原理 wx.getStorage(OBJECT)
是小程序实例化后 读入内存 还是每次调用从文件系统读取 https://github.com/Tencent/wepy/blob/bd0003dca2bfb9581134e1b05d4aa1d80fc ...
- segnet 编译与测试
segnet 编译与测试参考:http://sunxg13.github.io/2015/09/10/caffe/http://m.blog.csdn.net/lemianli/article/det ...