题目:http://codeforces.com/contest/908/problem/D

注意是子序列。加一个a对ab个数无影响;加一个b使ab个数多出它前面的a那么多个。所以状态里记录有多少个a和ab。

当 i+j>=k 的时候,再加一个b就结束了。用式子算一下期望,发现一个等比数列;用等比数列的公式算一下,变成一个值减去一个无限小的值,所以就是那个值了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
int n,A,B,tmp,C,dp[N][N];
bool vis[N][N];
int pw(int x,int k)
{
int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;
}
int dfs(int i,int j)
{
if(vis[i][j])return dp[i][j];
vis[i][j]=;
if(i+j>=n) return dp[i][j]=(i+j+C)%mod;
dp[i][j]=((ll)A*dfs(i+,j)+(ll)B*dfs(i,i+j))%mod;
return dp[i][j];
}
int main()
{
scanf("%d%d%d",&n,&A,&B);
tmp=pw(A+B,mod-); C=(ll)A*pw(B,mod-)%mod;
A=(ll)A*tmp%mod; B=(ll)B*tmp%mod;
printf("%d\n",dfs(,));
return ;
}

CF 908D New Year and Arbitrary Arrangement——期望dp的更多相关文章

  1. $CF908D\ New\ Year\ and\ Arbitrary\ Arrangement$ 期望$dp$

    正解:期望$dp$ 解题报告: 传送门$QwQ$ 阿关于题目里那个形如$ab$的子序列我说下,,,我我我之前$get$了好久$QAQ$.这里子序列的个数的定义是这样儿的,举个$eg$,$aabb$,就 ...

  2. CF 908 D New Year and Arbitrary Arrangement —— 期望DP

    题目:http://codeforces.com/contest/908/problem/D 首先,设 f[i][j] 表示有 i 个 a,j 个 ab 组合的期望,A = pa / (pa + pb ...

  3. Solution -「CF 908D」New Year&Arbitrary Arrangement

    \(\mathcal{Description}\)   Link.   给定 \(n,p_a,p_b\),初始有一个空串,每次操作有 \(\frac{p_a}{p_a+p_b}\) 的概率在其后添加字 ...

  4. CF908D New Year and Arbitrary Arrangement(期望Dp+数学)

    题目大意:给你一个空字符串,你有\(\frac{pa}{pa+pb}\)的概率往字符串最后面加个\(a\),\(\frac{pb}{pa+pb}\)的概率往字符串最后面加个\(b\),当子序列\(ab ...

  5. [CodeForces]908D New Year and Arbitrary Arrangement

    设状态f[i][j]表示有i个a,j个ab的期望 发现如果i+j>=k的话就再来一个b就行了. #include <iostream> #include <cstdio> ...

  6. CF908D New Year and Arbitrary Arrangement 期望、DP

    题目传送门 题意:给出正整数$pa,pb,k$,最开始你有一个空串,每一次你有$\frac{pa}{pa + pb}$的概率向串最后放一个$a$,有$\frac{pb}{pa + pb}$的概率向串最 ...

  7. Codeforces 908D New Year and Arbitrary Arrangement(概率DP,边界条件处理)

    题目链接  Goodbye 2017 Problem D 题意  一个字符串开始,每次有$\frac{pa}{pa+pb}$的概率在后面加一个a,$\frac{pb}{pa+pb}$的概率在后面加一个 ...

  8. 908D New Year and Arbitrary Arrangement

    传送门 分析 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string ...

  9. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

随机推荐

  1. [转]FPGA网站推荐

    1. OPENCORES.ORG这里提供非常多,非常好的PLD了内核,8051内核就可以在里面找到.进入后,选择project或者由http//www.opencores.org/browse.cgi ...

  2. A、B两伙马贼意外地在一片沙漠中发现了一处金矿,双方都想独占金矿,但各自的实力都不足以吞下对方,经过谈判后,双方同意用一个公平的方式来处理这片金矿。处理的规则如下:他们把整个金矿分成n段,由A、B开始轮流从最左端或最右端占据一段,直到分完为止。 马贼A想提前知道他们能分到多少金子,因此请你帮忙计算他们最后各自拥有多少金子?(两伙马贼均会采取对己方有利的策略)

    第一种做法:这种方法,算法复杂性大,重复的递归 #include "stdafx.h" #include<iostream> #include<vector> ...

  3. jquery单选框radio绑定click事件实现方法

    本文实例讲述了jquery单选框radio绑定click事件实现方法.分享给大家供大家参考. 具体实现方法如下: 复制代码代码如下: <html><head><title ...

  4. js中insertAdjacentHTML的玩法

    原型:insertAdajcentHTML(swhere,stext) insertAdjacentHTML方法:在指定的地方插入html标签语句 参数:swhere: 指定插入html标签语句的地方 ...

  5. 我眼中的Oracle Database Software 和 Oracle Database

    我眼中的Oracle Database Software 和 Oracle Database 我喜欢用微软的office软件和word文档(确切的说是:自己写的word文档,能够把这个Word文档想象 ...

  6. 进程间的八种通信方式----共享内存是最快的 IPC 方式

    1.无名管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系通常是指父子进程关系. 2.高级管道(popen):将另一个程序当做一个新 ...

  7. webpy使用mysql数据库操作(web.database)

    webpy_web.database模块 webpy框架中使用mysql管理数据库有两种方法,一种是使用python里面的MySQLdb模块: import MySQLdb 还有一种就是用webpy自 ...

  8. php 算法之------------怎样打印出下图

    自己偶尔看到了下图.于是用php打印出下图. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveGluZ2ppZ29uZ3Np/font/5a6L5L2T/f ...

  9. zookeeper启动流程简单梳理

    等着測试童鞋完工,顺便里了下zookeeper的启动流程 zk3.4.6 启动脚本里面 nohup "$JAVA" "-Dzookeeper.log.dir=${ZOO_ ...

  10. HDU 1452 Happy 2004(唯一分解定理)

    题目链接:传送门 题意: 求2004^x的全部约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)* ...