BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性
Description
已知一个长度为n的序列a1,a2,...,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j))
Input
第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)
Output
n行,第i行表示对于i,得到的p
Sample Input
5
3
2
4
2
4
Sample Output
2
3
5
3
5
4
首先有f[i]=max(a[j]+sqrt(|i-j|))-a[i]
先考虑j<i的情况,然后在考虑j>i的情况。
设j1<j2<i1<i2,j2转移i1比j1转移i1优,j1转移i2比j2转移i2优。
那么上下加一下再展开可以得出这是错的,所以满足决策单调性。
这个题比较良心卡出了我以前决策单调性代码的罢嗝。
就是每次队首的l需要++,否则计算后面的时候会用到Q[l].l,而此时Q[l].l可能已经转移过了。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 500050
typedef double f2;
struct A {
int l,r,p;
}Q[N];
int a[N],n;
f2 f[N];
f2 Y(int j,int i) {
return a[j]+sqrt(i>j?i-j:j-i);
}
int find1(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)<=Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
int find2(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l-1;
}
int main() {
scanf("%d",&n);
int i,l=0,r=0;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
for(i=1;i<=n;i++) {
Q[l].l++;
while(l<r&&Q[l].l>Q[l].r) l++;
f[i]=max(0.0,Y(Q[l].p,i)-a[i]);
if(l==r||Y(i,n)>Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)>Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find1(Q[r-1],i);
Q[r-1].r=x-1; Q[r++]=(A){x,n,i};
}
}
}
l=r=0;
for(i=n;i>=1;i--) {
Q[l].r--;
while(l<r&&Q[l].l>Q[l].r) l++;
f[i]=max(f[i],Y(Q[l].p,i)-a[i]);
if(l==r||Y(i,1)>Y(Q[r-1].p,1)) {
while(l<r&&Y(i,Q[r-1].r)>Y(Q[r-1].p,Q[r-1].r)) r--;
if(l==r) Q[r++]=(A){1,i,i};
else {
int x=find2(Q[r-1],i);
Q[r-1].l=x+1; Q[r++]=(A){1,x,i};
}
}
}
for(i=1;i<=n;i++) {
printf("%d\n",(int)ceil(f[i]));
}
}
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性的更多相关文章
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
随机推荐
- 非GUI模式下运行JMeter和远程启动JMeter
JMeter是一款非常不错的免费开源压力测试工具,越来越多的公司在使用.不过,在使用过程中可能会存在一些问题,比如:GUI模式非常消耗资源,单个客户端测试无法达到目标压力.而使用非 GUI 模式,即命 ...
- java性能监控工具jps-windows
jps Lists the instrumented Java Virtual Machines (JVMs) on the target system. This command is experi ...
- Eoeclient源代码分析---SlidingMenu的使用
Eoeclient源代码分析及代码凝视 使用滑动菜单SlidingMenu,单击滑动菜单的不同选项,能够通过ViewPager和PagerIndicator显示相应的数据内容. 0 BaseSlid ...
- Failure [INSTALL_FAILED_ALREADY_EXISTS]
1.发生原因 做unity开发的同事说apk无法安装,要我帮忙看下,然后我通过命令adb install安装apk,出现此提示 2.解决过程 首先想到的仍然是安装包已存在的问题,结果使用清理类软件清理 ...
- Node.js 数据存储方式的选择
如何为你的 Node.js 应用挑选数据库 Node.js 应用一般有三种方式保存数据. 不使用任何数据库管理系统(DBMS),把数据保存在内存里或直接使用文件系统. 使用关系数据库.例如 MySQL ...
- 几篇QEMU/KVM代码分析文章
QEMU/KVM结合起来分析的几篇文章,代码跟最新的版本有些差异,但大体逻辑一样,写得通俗易懂.我把链接放这里主要是为自己需要查看时调转过去方便,感谢作者的付出! QEMU Source Code S ...
- Ubuntu Server 12.04 乱码
sudo vim /etc/default/locale 将 下面的内容修改 LANG="zh_CN.UTF-8" LANGUAGE="zh_CN:zh" 修改 ...
- 例题6-16 单词 UVa10129
1.题目描写叙述:点击打开链接 2.解题思路:本题利用欧拉回路存在条件解决. 能够将全部的单词看做边,26个字母看做端点,那么本题事实上就是问是否存在一条路径,能够到达全部出现过的字符端点. 因为本题 ...
- 【转】IDA Pro7.0使用技巧总结
俗话说,工欲善其事,必先利其器,在二进制安全的学习中,使用工具尤为重要,而IDA又是玩二进制的神器,以前在使用IDA的时候,只是用几个比较常用的功能,对于IDA的其他功能没有去研究,于是本着学习的精神 ...
- [IT新应用]如何拯救死机的苹果手机(iPhone X)
突然白天接了一个电话,苹果就死机了.这是用这个手机半年来第一次.貌似还能接电话,就是屏幕上一个白色的圆圈,一直转啊转. 后来百度了一下,找到这一篇.将重点部分摘录如下: http://www.sohu ...