what's xxx

PCA principal components analysis is for dimensionality reduction.

主要是通过对协方差矩阵Covariance matrix进行特征分解,以得出数据的主成分(即特征向量eigenvector)与它们的权值(即特征值eigenvalue)。

PCA是最简单的以特征量分析多元统计分布的方法。其结果可以理解为对原数据中的方差variance做出解释:哪一个方向上的数据值对方差的影响最大?换而言之,PCA提供了一种降低数据维度的有效办法;如果分析者在原数据中除掉最小的特征值所对应的成分,那么所得的低维度数据必定是最优化的(也即,这样降低维度必定是失去讯息最少的方法)。

Algorithm

  1. 计算协方差矩阵;
  2. 计算最大的k个特征向量,组成转换矩阵;
  3. 降维;
  4. 聚类;

ML | PCA的更多相关文章

  1. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  2. ML: 降维算法-PCA

            PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...

  3. Spark2 ML 学习札记

    摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训 ...

  4. scikit-learn中的主成分分析(PCA)的使用

    1.函数原型及参数说明 class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False) 参数说明: n_comp ...

  5. PCA算法

    本文出处:http://blog.csdn.net/xizhibei http://www.cnblogs.com/bourneli/p/3624073.html PrincipalComponent ...

  6. 斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

    斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析). PCA是一种直接的降维方法.通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题, ...

  7. 模式识别(1)——PCA算法

    作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...

  8. 第七篇:数据预处理(四) - 数据归约(PCA/EFA为例)

    前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给 ...

  9. Notes : <Hands-on ML with Sklearn & TF> Chapter 6

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. 【linux】【安全】服务器安全建议

    引用自 <鸟哥的linux私房菜-服务器篇>  http://cn.linux.vbird.org/linux_server/0210network-secure_1.php 建立完善的登 ...

  2. Java Web系统常用的第三方接口

    1.    Web Service 接口 1.1 接口方式说明和优点 在笔者的开发生涯中,当作为接口提供商给第三方提供接口时,以及作为客户端去调用第三方提供的接口时,大部分时候都是使用 Web  Se ...

  3. sql执行过长,如何入手优化

    一条sql执行过长的时间,你如何优化,从哪些方面 1.查看sql是否涉及多表的联表或者子查询,如果有,看是否能进行业务拆分,相关字段冗余或者合并成临时表(业务和算法的优化)2.涉及链表的查询,是否能进 ...

  4. python GIL锁、进程池与线程池、同步异步

    一.GIL全局解释器锁 全局解释器锁 在CPython中,全局解释器锁(GIL)是一个互斥锁,它可以防止多个本机线程同时执行Python代码.之所以需要这个锁,主要是因为CPython的内存管理不是线 ...

  5. cyg-apt update 升级报错

    现象: $ cyg-apt updatecyg-apt: downloading: http://box-soft.com/setup-2.bz2cyg-apt: downloading: http: ...

  6. python multiprocessing 源码分析

    1. 文档是最先需要了解的,读完文档可能会有很多的意外的收获同时也会留下疑惑,对于一般的使用我觉得读完文档就差不多了,除非一些很有疑惑的地方你可能需要再深入的了解一下.我读文档的目的第一个就是为了找出 ...

  7. 关于freetype在安装中的遇到的问题

    本人电脑配置的是Anconda环境+pycharm2017.2.2 comuniity,每次安装什么包就是直接pip install 的,但是这次在安装freetype的安装中却遇到了麻烦. 具体是在 ...

  8. 缓存淘汰算法之LRU实现

    Java中最简单的LRU算法实现,就是利用 LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可 如果你去看LinkedHashMap的源码可知,LR ...

  9. install cinnamon on ubuntu 14.04

    emotion: I feel not comfortable with ubuntu 14.04 default desktop unity,i still look for a alternati ...

  10. [git 学习篇] 修改文件

    http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/0013743858312764d ...