LeetCode OJ--Minimum Path Sum **
https://oj.leetcode.com/problems/minimum-path-sum/
对一个grid从左上角到右下角的路径,求出路径中和最小的。
受之前思路的影响,就寻思递归,并且记录中间过程的数据,这样避免重复计算。但是超时了。
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
vector<vector<int> > sum;
if(grid.size()==)
return ;
int row = grid.size();
int col = grid[].size();
sum.resize(row);
for(int i = ;i<row;i++)
sum[i].resize(col);
return calcPath(,,grid,row,col,sum);
}
int calcPath(int xPos,int yPos,vector<vector<int> > &grid,int row,int col, vector<vector<int> > &sum)
{
if(xPos == row- && yPos == col-)
return grid[xPos][yPos];
int min1 = -,min2 = -;
if(xPos < row-)
if (sum[xPos+][yPos] == )
min1 = calcPath(xPos+,yPos,grid,row,col,sum);
else
min1 = sum[xPos+][yPos];
if(yPos < col-)
if(sum[xPos][yPos+] == )
min2 = calcPath(xPos,yPos+,grid,row,col,sum);
else
min2 = sum[xPos][yPos+];
if(min1 == -)
return min2;
if(min2 == -)
return min1;
return min1<min2?min1:min2;
}
};
其实,这个递归也是动态规划的思想。
但是,动态规划也可以用for循环做,于是清理思路,动态规划,for循环实现。
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
vector<vector<int> > sum;
if(grid.size()==)
return ;
int row = grid.size();
int col = grid[].size();
sum.resize(row);
for(int i = ;i<row;i++)
sum[i].resize(col);
//initialize
sum[row-][col-] = grid[row-][col-];
for(int i = col-;i>=;i--)
sum[row-][i] += grid[row-][i] + sum[row-][i+];
for(int i = row-;i>=;i--)
sum[i][col-] += grid[i][col-] + sum[i+][col-];
for(int i = row-; i>=;i--)
for(int j = col-;j>=;j--)
{
int t1 = grid[i][j] + sum[i][j+];
int t2 = grid[i][j] + sum[i+][j];
sum[i][j] = t1<t2?t1:t2;
}
return sum[][];
}
};
LeetCode OJ--Minimum Path Sum **的更多相关文章
- [Leetcode Week9]Minimum Path Sum
Minimum Path Sum 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-path-sum/description/ Descr ...
- 【leetcode】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 【LeetCode OJ】Path Sum II
Problem Link: http://oj.leetcode.com/problems/path-sum-ii/ The basic idea here is same to that of Pa ...
- 【LeetCode OJ】Path Sum
Problem Link: http://oj.leetcode.com/problems/path-sum/ One solution is to BFS the tree from the roo ...
- LeetCode 64. Minimum Path Sum(最小和的路径)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- leetcode 【 Minimum Path Sum 】python 实现
题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...
- [LeetCode] 64. Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- LeetCode 64 Minimum Path Sum
Problem: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom ri ...
- LeetCode OJ 112. Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- 【leetcode】Minimum Path Sum(easy)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
随机推荐
- spring IOC注解与xml配置
转载自:https://blog.csdn.net/u014292162/article/details/52277756 IOC 1小案例 将对象的依赖交给配置文件来配置(配置文件的名字是可以任意的 ...
- 如何用纯 CSS 和 D3 创作一只扭动的蠕虫
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QBQJMg 可交互视频 ...
- 为PHPcms扩展json采集
最近想用phpcms做个新闻类网站,做采集的时候发现没有json的选项,于是自己动手,增加了采集json选项. 由于有的网站并不是纯json传输,而是jsonp,因此我把json,jsonp数据都当做 ...
- 【mysql】mysql存储过程实例
```mysql DELIMITER $$ DROP PROCEDURE IF EXISTS `system_number_update` $$ CREATE DEFINER=`root`@` ...
- ssh登陆之忽略known_hosts文件
在平时工作中,有时候需要SSH登陆到别的Linux主机上去,但有时候SSH登陆会被禁止,并弹出如下类似提示: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ...
- UVa 10655 Contemplation! Algebra 矩阵快速幂
题意: 给出\(p=a+b\)和\(q=ab\),求\(a^n+b^n\). 分析: 这种题目关键还是在于构造矩阵: \(\begin{bmatrix} 0 & 1 \\ -(a+b) &am ...
- UVa 1407 树形背包 Caves
这道题可以和POJ 2486 树形背包DP Apple Tree比较着来做. 参考题解 #include <iostream> #include <cstdio> #inclu ...
- JAVA-基础(五) 更多工具集
1.StringTokenizer(字符串标记) StringTokenizer实现枚举(Enumeration)接口.因此,给定一个输 入字符串,可以使用StringTokenizer对包含于其中的 ...
- base64转图片
y一个简单的工具类,附上: /** * @param imgStr 图片的base64 * @param path 将要生成的地址 * @return */ public static boolean ...
- PHP smarty模版引擎基本安装
环境: PHP5.2 以上版本 先去官网下载smarty模版引擎的库文件到你的电脑或服务器上 smarty官方网站库文件下载地址: https://www.smarty.net/download 下 ...