[神经网络]一步一步使用Mobile-Net完成视觉识别(五)
1.环境配置
2.数据集获取
3.训练集获取
4.训练
5.调用测试训练结果
6.代码讲解
本文是第五篇,讲解如何调用测试训练结果。
上一篇中我们输出了训练的模型,这一篇中我们通过调用训练好的模型来完成测试工作。
在object_detection目录下创建test.py并输入以下内容:
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils as vis_util ENERMY = 2 # 1 代表蓝色方,2 代表红色方 ,设置蓝色方为敌人
DEBUG = False
THRE_VAL = 0.2 PATH_TO_CKPT ='/home/xueaoru/models/research/inference_graph_v2/frozen_inference_graph.pb'
PATH_TO_LABELS = '/home/xueaoru/models/research/object_detection/car_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph() with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0') def video_test():
#cap = cv2.VideoCapture(1)
cap = cv2.VideoCapture("/home/xueaoru/下载/RoboMaster2.mp4")
while(1):
time = cv2.getTickCount()
ret, image = cap.read()
if ret!= True:
break
image_expanded = np.expand_dims(image, axis=0)#[1,w,h,3] (boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
#print(np.squeeze(classes).astype(np.int32))
#print(np.squeeze(scores))
#print(np.squeeze(boxes))
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.4) cv2.imshow('Object detector', image)
key = cv2.waitKey(1)&0xff
time = cv2.getTickCount() - time
print("处理时间:"+str(time*1000/cv2.getTickFrequency()))
if key ==27:
break
cv2.destroyAllWindows()
def pic_test():
image = cv2.imread("/home/xueaoru/models/research/images/image12.jpg")
image_expanded = np.expand_dims(image, axis=0) # [1,w,h,3] (boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded}) if DEBUG:
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.80)
else:
score = np.squeeze(scores)
max_index = np.argmax(score)
score = score[max_index]
detected_class = np.squeeze(classes).astype(np.int32)[max_index]
if score > THRE_VAL and detected_class == ENERMY:
box = np.squeeze(boxes)[max_index]#(ymin,xmin,ymax,xmax)
h,w,_ = image.shape
min_point = (int(box[1]*w),int(box[0]*h))
max_point = (int(box[3]*w),int(box[2]*h))
cv2.rectangle(image,min_point,max_point,(0,255,255),2) cv2.imshow('Object detector', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
video_test()

好了,暂时就先这样吧,最后一篇详细讲解包括通过这些识别到的框到最后计算炮台偏转角度的代码。这段代码的讲解也放在后面。
[神经网络]一步一步使用Mobile-Net完成视觉识别(五)的更多相关文章
- 一步一步理解word2Vec
一.概述 关于word2vec,首先需要弄清楚它并不是一个模型或者DL算法,而是描述从自然语言到词向量转换的技术.词向量化的方法有很多种,最简单的是one-hot编码,但是one-hot会有维度灾难的 ...
- 如何一步一步用DDD设计一个电商网站(十二)—— 提交并生成订单
阅读目录 前言 解决数据一致性的方案 回到DDD 设计 实现 结语 一.前言 之前的十一篇把用户购买商品并提交订单整个流程上的中间环节都过了一遍.现在来到了这最后一个环节,提交订单.单从业务上看,这个 ...
- 如何一步一步用DDD设计一个电商网站(十三)—— 领域事件扩展
阅读目录 前言 回顾 本地的一致性 领域事件发布出现异常 订阅者处理出现异常 结语 一.前言 上篇中我们初步运用了领域事件,其中还有一些问题我们没有解决,所以实现是不健壮的,下面先来回顾一下. 二.回 ...
- NLP(二十九)一步一步,理解Self-Attention
本文大部分内容翻译自Illustrated Self-Attention, Step-by-step guide to self-attention with illustrations and ...
- 如何一步一步用DDD设计一个电商网站(九)—— 小心陷入值对象持久化的坑
阅读目录 前言 场景1的思考 场景2的思考 避坑方式 实践 结语 一.前言 在上一篇中(如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成),有一行注释的代码: public interfa ...
- 如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成
阅读目录 前言 建模 实现 结语 一.前言 前面几篇已经实现了一个基本的购买+售价计算的过程,这次再让售价丰满一些,增加一个会员价的概念.会员价在现在的主流电商中,是一个不大常见的模式,其带来的问题是 ...
- 如何一步一步用DDD设计一个电商网站(十)—— 一个完整的购物车
阅读目录 前言 回顾 梳理 实现 结语 一.前言 之前的文章中已经涉及到了购买商品加入购物车,购物车内购物项的金额计算等功能.本篇准备把剩下的购物车的基本概念一次处理完. 二.回顾 在动手之前我对之 ...
- 如何一步一步用DDD设计一个电商网站(七)—— 实现售价上下文
阅读目录 前言 明确业务细节 建模 实现 结语 一.前言 上一篇我们已经确立的购买上下文和销售上下文的交互方式,传送门在此:http://www.cnblogs.com/Zachary-Fan/p/D ...
- 如何一步一步用DDD设计一个电商网站(六)—— 给购物车加点料,集成售价上下文
阅读目录 前言 如何在一个项目中实现多个上下文的业务 售价上下文与购买上下文的集成 结语 一.前言 前几篇已经实现了一个最简单的购买过程,这次开始往这个过程中增加一些东西.比如促销.会员价等,在我们的 ...
- 如何一步一步用DDD设计一个电商网站(五)—— 停下脚步,重新出发
阅读目录 前言 单元测试 纠正错误,重新出发 结语 一.前言 实际编码已经写了2篇了,在这过程中非常感谢有听到观点不同的声音,借着这个契机,今天这篇就把大家提出的建议一个个的过一遍,重新整理,重新出发 ...
随机推荐
- Photoshop CC 智能切图功能介绍
http://gdc.qq.com/ http://gdc.qq.com/?p=4445
- HDU - 5887 2016青岛网络赛 Herbs Gathering(形似01背包的搜索)
Herbs Gathering 10.76% 1000ms 32768K Collecting one's own plants for use as herbal medicines is pe ...
- iOS内购流程二(添加产品、沙盒账号以及上架流程)
注意:使用了IAP的App必须先配置好协议.税务和银行业务 一.创建一个App应用 1.登录iTunes Store,点击我的App 2.新建一个App(如果App已经创建,直接点击App进入就行了) ...
- 【原】spring+springmvc+mybatis整合
整合框架的代码结构: 最全约束: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...
- HTML5学习笔记(三)新属性、功能
HTML5 拖放 1.元素的 draggable 属性设置为 true 2.ondragstart 属性调用函数,函数中dataTransfer.setData() 方法设置被拖数据的数据类型和值 3 ...
- CentOS 下部署Nginx+Gunicorn+Supervisor部署Flask项目
原本之前有一部分东西是在Windows Server,但是由于Gunicorn不支持Windows部署起来颇为麻烦.最近转战CentOS,折腾一段时间,终于简单部署成功.CentOS新手,作为一个总结 ...
- 2014 Noip提高组 Day1
P1328 生活大爆炸版石头剪刀布 [题目描述] 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一样,则不分胜负.在<生活大爆炸>第二季第8 集中出现了一种石头 ...
- jquery插件fileupload图片上传(前端如何处理)
1.页面首先引入jquery,版本不要低于1.6 <script src="../js/jquery.min.js"></script>2.其次页面引入对应 ...
- 1.函数的结构,调用,传参,形参,实参,args,kwargs,名称空间,高阶函数
1.函数的初识 初始函数 获取任意一个字符串的元素的个数 s1='dsjdkjkfefenga' count=0 for i in s1: count+=1 print(count) 获取列表的元素的 ...
- Python面向对象之结构与成员
1.面向对象结构分析: ----面相对象整体大致分为两块区域: --------第一部分:静态字段(静态变量)部分 --------第二部分:方法部分 --每个大区域可以分为多个小部分: class ...