[神经网络]一步一步使用Mobile-Net完成视觉识别(五)
1.环境配置
2.数据集获取
3.训练集获取
4.训练
5.调用测试训练结果
6.代码讲解
本文是第五篇,讲解如何调用测试训练结果。
上一篇中我们输出了训练的模型,这一篇中我们通过调用训练好的模型来完成测试工作。
在object_detection目录下创建test.py并输入以下内容:
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils as vis_util ENERMY = 2 # 1 代表蓝色方,2 代表红色方 ,设置蓝色方为敌人
DEBUG = False
THRE_VAL = 0.2 PATH_TO_CKPT ='/home/xueaoru/models/research/inference_graph_v2/frozen_inference_graph.pb'
PATH_TO_LABELS = '/home/xueaoru/models/research/object_detection/car_label_map.pbtxt'
NUM_CLASSES = 2
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph() with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0') def video_test():
#cap = cv2.VideoCapture(1)
cap = cv2.VideoCapture("/home/xueaoru/下载/RoboMaster2.mp4")
while(1):
time = cv2.getTickCount()
ret, image = cap.read()
if ret!= True:
break
image_expanded = np.expand_dims(image, axis=0)#[1,w,h,3] (boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
#print(np.squeeze(classes).astype(np.int32))
#print(np.squeeze(scores))
#print(np.squeeze(boxes))
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.4) cv2.imshow('Object detector', image)
key = cv2.waitKey(1)&0xff
time = cv2.getTickCount() - time
print("处理时间:"+str(time*1000/cv2.getTickFrequency()))
if key ==27:
break
cv2.destroyAllWindows()
def pic_test():
image = cv2.imread("/home/xueaoru/models/research/images/image12.jpg")
image_expanded = np.expand_dims(image, axis=0) # [1,w,h,3] (boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded}) if DEBUG:
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.80)
else:
score = np.squeeze(scores)
max_index = np.argmax(score)
score = score[max_index]
detected_class = np.squeeze(classes).astype(np.int32)[max_index]
if score > THRE_VAL and detected_class == ENERMY:
box = np.squeeze(boxes)[max_index]#(ymin,xmin,ymax,xmax)
h,w,_ = image.shape
min_point = (int(box[1]*w),int(box[0]*h))
max_point = (int(box[3]*w),int(box[2]*h))
cv2.rectangle(image,min_point,max_point,(0,255,255),2) cv2.imshow('Object detector', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
video_test()
好了,暂时就先这样吧,最后一篇详细讲解包括通过这些识别到的框到最后计算炮台偏转角度的代码。这段代码的讲解也放在后面。
[神经网络]一步一步使用Mobile-Net完成视觉识别(五)的更多相关文章
- 一步一步理解word2Vec
一.概述 关于word2vec,首先需要弄清楚它并不是一个模型或者DL算法,而是描述从自然语言到词向量转换的技术.词向量化的方法有很多种,最简单的是one-hot编码,但是one-hot会有维度灾难的 ...
- 如何一步一步用DDD设计一个电商网站(十二)—— 提交并生成订单
阅读目录 前言 解决数据一致性的方案 回到DDD 设计 实现 结语 一.前言 之前的十一篇把用户购买商品并提交订单整个流程上的中间环节都过了一遍.现在来到了这最后一个环节,提交订单.单从业务上看,这个 ...
- 如何一步一步用DDD设计一个电商网站(十三)—— 领域事件扩展
阅读目录 前言 回顾 本地的一致性 领域事件发布出现异常 订阅者处理出现异常 结语 一.前言 上篇中我们初步运用了领域事件,其中还有一些问题我们没有解决,所以实现是不健壮的,下面先来回顾一下. 二.回 ...
- NLP(二十九)一步一步,理解Self-Attention
本文大部分内容翻译自Illustrated Self-Attention, Step-by-step guide to self-attention with illustrations and ...
- 如何一步一步用DDD设计一个电商网站(九)—— 小心陷入值对象持久化的坑
阅读目录 前言 场景1的思考 场景2的思考 避坑方式 实践 结语 一.前言 在上一篇中(如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成),有一行注释的代码: public interfa ...
- 如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成
阅读目录 前言 建模 实现 结语 一.前言 前面几篇已经实现了一个基本的购买+售价计算的过程,这次再让售价丰满一些,增加一个会员价的概念.会员价在现在的主流电商中,是一个不大常见的模式,其带来的问题是 ...
- 如何一步一步用DDD设计一个电商网站(十)—— 一个完整的购物车
阅读目录 前言 回顾 梳理 实现 结语 一.前言 之前的文章中已经涉及到了购买商品加入购物车,购物车内购物项的金额计算等功能.本篇准备把剩下的购物车的基本概念一次处理完. 二.回顾 在动手之前我对之 ...
- 如何一步一步用DDD设计一个电商网站(七)—— 实现售价上下文
阅读目录 前言 明确业务细节 建模 实现 结语 一.前言 上一篇我们已经确立的购买上下文和销售上下文的交互方式,传送门在此:http://www.cnblogs.com/Zachary-Fan/p/D ...
- 如何一步一步用DDD设计一个电商网站(六)—— 给购物车加点料,集成售价上下文
阅读目录 前言 如何在一个项目中实现多个上下文的业务 售价上下文与购买上下文的集成 结语 一.前言 前几篇已经实现了一个最简单的购买过程,这次开始往这个过程中增加一些东西.比如促销.会员价等,在我们的 ...
- 如何一步一步用DDD设计一个电商网站(五)—— 停下脚步,重新出发
阅读目录 前言 单元测试 纠正错误,重新出发 结语 一.前言 实际编码已经写了2篇了,在这过程中非常感谢有听到观点不同的声音,借着这个契机,今天这篇就把大家提出的建议一个个的过一遍,重新整理,重新出发 ...
随机推荐
- 防止APP退到被安卓系统清理
一个是尽量提高APP权限,无非就是保持APP始终界面在前台 二是使用守护进程方法,被清理了立刻自己启动, 三是前台跟后台进程分开,被重启了恢复原始环境. // 申请设备电源锁,在服务start的时候. ...
- C# ConfigurationManager 类的使用
一.前言 在项目中,我们习惯使用 ConfigurationManager 来读取一些常量.如链接数据库字符串.一些需配置的数据(微信.QQ.支付宝)等的配置.我们需要把这些数据记录在 app.con ...
- UE4中资源加载资源的方式
在UNITY中,我们加载资源一般是通过Resources.Load(path).即可完成.该方法返回的是Object类型.如果你想要的是材质或者贴图等等,只要价格类型转换的关键字就可以了例如 as M ...
- 洛谷P1655 小朋友的球(Stirling数)
P1655 小朋友的球 题目描述 @发源于 小朋友最近特别喜欢球.有一天他脑子抽了,从口袋里拿出了N个不同的球,想把它们放到M个相同的盒子里,并且要求每个盒子中至少要有一个球,他好奇有几种放法,于是尝 ...
- JDBC连接数据以及详细的ResultSet结果集解释
一.数据库连接 (前面为jdbc的其他参数,文章下部分为ResultSet详解) ResultSet rs = st.executeQuery(sqlStr) 1. java的sql框架支持多种数据库 ...
- java.lang.NoClassDefFoundError: com/sun/tools/javac/processing/JavacProcessingEnvironment
最近项目用到了java程序动态编译java源文件,运行程序一直报错,提示错误如下: Can't initialize javac processor due to (most likely) a cl ...
- python——基本数据类型1——简介
列表 列表是可变数据类型.是序列类型; 列表的内容可以是数字,字符串和其它列表: 0第一个元素,-1最后一个元素, 定义连续列表 li = list(range(1,10,2)) 列表取值: 取 b: ...
- thinkphp5使用前置后置操作
下面举个例子,前置删除的例子 模型事件只可以在调用模型的方法才能生效,使用查询构造器通过Db类操作是无效的 控制器中实例化类 $cate=model('cate'); $cate-> ...
- 题解 P1004 方格取数
传送门 动态规划Yes? 设i为路径长度,(为什么i这一维可以省掉见下)f[j][k]表示第一个点到了(j,i-j),第二个点到了(k,j-k) 则 int ji=i-j,ki=i-k; f[j][k ...
- .NET Core使用NLog通过Kafka实现日志收集
微服务日志之.NET Core使用NLog通过Kafka实现日志收集 https://www.cnblogs.com/maxzhang1985/p/9522017.html 一.前言 NET Core ...