POJ 3260 The Fewest Coins 最少硬币个数(完全背包+多重背包,混合型)
题意:FJ身上有各种硬币,但是要买m元的东西,想用最少的硬币个数去买,且找回的硬币数量也是最少(老板会按照最少的量自动找钱),即掏出的硬币和收到的硬币个数最少。
思路:老板会自动找钱,且按最少的找,硬币数量也不限,那么可以用完全背包得出组成每个数目的硬币最少数量。而FJ带的钱是有限的,那么必须用多重背包,因为掏出的钱必须大于m,那么我们所要的是大于等于m钱的硬币个数,但是FJ带的钱可能很多,超过m的很多倍都可能,那么肯定要有个背包容量上限,网上说的根据抽屉原理是m+max*max,这里的max指的是最大面值。而给多了的钱上限是max*max,那么找回的钱也必须是max*max,所以完全背包部分的背包容量是max*max。穷举这max*max个可能就行了。
我的思路:与上面不同的是多重背包的容量应该是m+max,因为如果需要找回的钱大于max,那么老板也只是拿多几张最大面额的给你而已。比如买条烟1329块钱,13+1+1+4=19张RMB, 那么我们可以给他14张,15张,16张,17张,18张100的,老板会相应找回71块,171块,271块,371块,471块,你再往上加钱的话,老板也只是拿更多的100还你,这是多余的。那么最多不会超过一张一百(最大面额)的,也就是1329+100=1429为背包容量。错了很多次!
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#define INF 0x0ffffffa
using namespace std;
const int N=;
const int limit=;
int n, t;
int com[limit]; //完全背包
int mul[limit]; //多重背包
int big;
struct node
{
int v,c;
}coin[N]; int cal()
{
for(int i=; i<=big*big; i++) com[i]=INF;
com[]=;
for(int i=; i<n; i++) //完全背包
{
for(int j=; j+coin[i].v<=big*big; j++) //上限big*big
{
if(com[j+coin[i].v]>com[j]+)
com[j+coin[i].v]= com[j]+ ;
} } int upto= t+ big*big; //多重背包上限
for(int i=; i<=upto; i++) mul[i]=INF;
mul[]=;
for(int i=; i<n; i++ ) //多重背包:01背包+二进制
{
int k=,tmp=coin[i].c;
while()
{
if(k>tmp&&tmp) k=tmp;
else if(k>tmp) break;
for(int j=upto; j>=k*coin[i].v; j-- )
if(mul[j-k*coin[i].v ]!=INF&&mul[j-k*coin[i].v]+k<mul[j])
mul[j]=mul[j-k*coin[i].v]+k;
tmp-=k;
k<<=;
}
}
int ans=mul[t]; //刚好给t元
for(int i=t+,j=; i<upto; i++,j++ )
{
if(com[j]==INF || mul[i]==INF) continue; //INF的表示不能刚好凑成这个价,滤掉。
else if(ans>mul[i]+com[j] ) ans= mul[i]+com[j];
} if(ans==INF) return -;
return ans;
}
int main()
{
//freopen("input.txt","r",stdin);
while(cin>>n>>t)
{
big=-;
for(int i=; i<n; i++)
{
scanf("%d",&coin[i].v);
if(big<coin[i].v) big=coin[i].v;
}
for(int i=; i<n; i++) scanf("%d",&coin[i].c);
printf("%d\n",cal());
} return ;
}
AC代码
POJ 3260 The Fewest Coins 最少硬币个数(完全背包+多重背包,混合型)的更多相关文章
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
- POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)
题目代号:POJ 3260 题目链接:http://poj.org/problem?id=3260 The Fewest Coins Time Limit: 2000MS Memory Limit: ...
- POJ 3260 The Fewest Coins(背包问题)
[题目链接] http://poj.org/problem?id=3260 [题目大意] 给出你拥有的货币种类和每种的数量,商店拥有的货币数量是无限的, 问你买一个价值为m的物品,最少的货币流通数量为 ...
- POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)
Q: 既是多重背包, 还是找零问题, 怎么处理? A: 题意理解有误, 店主支付的硬币没有限制, 不占额度, 所以此题不比 1252 难多少 Description Farmer John has g ...
- poj 3260 The Fewest Coins
// 转载自http://blog.163.com/benz_/blog/static/18684203020115721917109/算法不难看出,就是一个无限背包+多重背包.问题在于背包的范围.设 ...
- (混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)
http://poj.org/problem?id=3260 Description Farmer John has gone to town to buy some farm supplies. ...
- 洛谷P2851 [USACO06DEC]最少的硬币The Fewest Coins(完全背包+多重背包)
题目描述 Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always p ...
- POJ 3260 完全背包+多重背包+思维
传送门:https://vjudge.net/problem/20465/origin 题意:你有n种钞票,面值为c[i],数量为v[i],便利店老板有无数张面值为c[i]的钞票,问你买一个价值为T的 ...
- poj 1742 Coins(二进制拆分+bitset优化多重背包)
\(Coins\) \(solution:\) 这道题很短,开门见山,很明显的告诉了读者这是一道多重背包.但是这道题的数据范围很不友好,它不允许我们直接将这一题当做01背包去做.于是我们得想一想优化. ...
随机推荐
- FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
- 无监督学习:Linear Dimension Reduction(线性降维)
一 Unsupervised Learning 把Unsupervised Learning分为两大类: 化繁为简:有很多种input,进行抽象化处理,只有input没有output 无中生有:随机给 ...
- Solr 6.7学习笔记(05)-- highlighter
搜索结果高亮显示是搜索引擎中的常用功能,在Solr中,我们可以如下配置: <requestHandler name="/select" class="solr.Se ...
- hdu1520 Anniversary party
Anniversary party HDU - 1520 题意:你要举行一个晚会,所有人的关系可以构成一棵树,要求上下级关系的人不能同时出现,每一个人都有一个rating值,要求使整个晚会的ratin ...
- 洛谷P1582 倒水
P1582 倒水 题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子.每次他选择两个当前含水量相同的瓶子,把 ...
- 洛谷P3172 [CQOI2015]选数(容斥)
传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...
- [Xcode 实际操作]六、媒体与动画-(16)实现音乐的背景播放
目录:[Swift]Xcode实际操作 本文将演示音乐的背景播放功能 打开项目信息配置文件[info.plist]. 需要在配置文件中进行一些操作,使程序支持音乐的背景播放. 点击鼠标右键,弹出右键菜 ...
- Vue2中实现微信分享支付功能
Vue2中实现微信分享支付功能 近期做了一个微信公众号前后分离项目,前端采用Vue2开发,后端SpringBoot,今天迫不及待的来给大家分享一下这次在开发中遇到的一些坑以及解决办法. 在这里,一些 ...
- Python多继承C3算法
Python3 多继承的MRO算法选择.MRO(Method Resolution Order):方法解析顺序. Python3 只保留了C3算法! C3算法解析: 1.C3算法解析 C3算法:MRO ...
- [Java]HashMap实现与哈希冲突,与HashTable的区别
对于 Map ,最直观就是理解就是键值对,映射,key-value 形式.一个映射不能包含重复的键,一个键只能有一个值.平常我们使用的时候,最常用的无非就是 HashMap. HashMap 实现了 ...